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Supporting Information 
 

Supporting Texts 

Text S1. Proteomic mapping database construction 
To have a quick access to the structural proteomic data in the DAMpred training process, a set 

of derivative libraries are constructed from two primary sequence and structure databases, 
UniProtKB [1] and PDB [2], with a mapping pipeline depicted in Figure S1. The UniProtKB is the 
central access point with extensively curated protein information, containing function, 
classification and cross-references of protein sequences. It includes two components of Swiss-Prot 
containing manually annotated records and TrEMBL with computationally analyzed records 
awaiting manual annotation. We extract all human entries from Swiss-Prot and TrEMBL, and 
construct two derivative libraries. The first is a feature table that lists the binding sites, enzyme 
active sites, posttranslational modifications, and other characteristics reported in the cited 
references; the second is a sequence library that is built by the makeblastdb program from the 
FASTA files of all human sequences in UniProt, prepared for DAMpred homology search. In 
addition, a lookup table of ‘x2acc’ is built from the UniProt idmapping data, which records the 
mapping information of the UniProt accession and other cross-reference IDs (Gene ID, RefSeq, 
PDB GO etc). 

The biological assembly (also referred as BioUnit) is the macromolecular assembly that has 
either been shown (or is believed) to be the minimum functional form of the molecule. In order to 
quickly retrieve the right biological information of the target proteins, a BioUnit database is 
constructed by collecting all the UniProt structures in the table x2acc that have a cross-reference 
ID to the PDB from the PDB ftp site (ftp://ftp.wwpdb.org/pub/pdb/data/biounit/PDB/all/). For each 
entry, the PDB residue position is mapped to the UniProt sequence residue position based on the 
DBREF record. Accordingly, a new table resMap is collected, which contains records of UniProt 
accession (acc), PDB ID, the initial and last sequence number of the PDB sequence segment 
(pdbSeqStart, pdbSeqEnd), the initial sequence number of the UniProt sequence segment 
(UniProtStart), the start and last residue number of the PDB structure part (structStart, structEnd), 
resolution, and BioUnit chains of each protein entry (Figure S1). 

The architecture of the derivative databases are constructed using SQLite, a relational database 
management system [3], where the entire package of the databases can be downloaded at 
http://zhanglab.ccmb.med.umich.edu/DAMpred/ download/human.sqlite. 

 
Test S2. Feature collections of DAMpred 

In total, we collected 70 features that are extracted from physicochemical properties, biological 
assembly, and I-TASSER structural prediction. A detailed list of the features is given in Table S2, 
with the feature extraction process depicted in Figure 1A. The 70 features are categorized into four 
groups based on their properties. 

 
Physicochemical properties 

The physicochemical property features in DAMpred include the pharmcophore of the target 
residues and the mutation-induced environmental pharmacophore changes. 

Pharmacophore of residues. A pharmacophore is an abstract description of the structural and 
chemical properties of the amino acids, which can be represented by a set of numerical values, 
known as the pharmacophore vector [4, 5]. Pharmacophore properties of each residue considered 
by DAMpred include hydrophobicity (HP or noHP), aromatic rings (AR or noAR), and charge 
(positive: PC, negative: NC and neutral: noC). In addition, DAMpred considers the pair-wise 
polarity and hydrogen-bonding interactions. The polarity is specified as BP (both are polar), OP 
(either is polar), or NP (both are nonpolar) for the target residue pairs. The hydrogen bond is 
specified by four different atom types of O-H⋯:N, O-H⋯:O, N-H⋯:N, and N-H⋯:O, where the 



 

 2 

hydrogen-donor-acceptor angle and hydrogen-acceptor distance cutoffs are set as 30° and 3.5 Å 
respectively. The counts of the acceptor (AC) and donor (DO) residues are also considered for each 
protein. This group of features is listed as Features 1-24 at the top of Table S2. 

We note that the concept of pharmacophore vector has been previously used by Pires et al in 
mCSM [4, 5]. However, there are several essential differences between the implementations of the 
pharmacophore vector in mCSM and DAMpred. First, DAMpred measures the items in 
pharmacophore in the unit of residues instead of atoms by mCSM; Second, DAMpred computes 
the physicochemical properties based on the amino acid types and the I-TASSER structural models, 
which is different from mCSM that uses a patent protected program PMapper; Third, DAMpred 
considers the contact interactions of residues from both wild and mutant structures, while mCSM 
used graph-based atom distance patterns considering only wild structure. Thus, although the 
concept is quite similar, the actual implementation and content of the pharmacophore vector in 
DAMpred are different from that used in mCSM. 

Mutation-induced environmental pharmacophore changes. Fourteen environmental 
pharmacophore features are considered (see Figure S11). Here, the pharmacophore vector for ith 
residue of the query protein is written as 𝑝'()))))⃗ = [𝑝-., 𝑝-0,⋯ , 𝑝-1] , where l is the number of 
pharmacophore types and cϵ[m,w] , with m and 𝑤  indicating mutant and wild structures 
respectively. The environmental pharmacophore changes due to the ith mutant can be calculated 
by 𝑐𝑜𝑠;<(𝑖) = 𝑐𝑜𝑠𝑖𝑛(𝑝';))))))⃗ , 𝑝'<))))))⃗ )  and 𝑟𝑚𝑠;<(𝑖) = 𝑟𝑚𝑠𝑑(𝑝';))))))⃗ , 𝑝'<))))))⃗ ) . The neighbor environment 
pharmacophore counts for the interactions of the target residue and all residues in contact (𝑛-(), i.e., 
𝑝𝑛'())))))))⃗ = ∑ 𝑝E;)))))))⃗FG

H

EI. . Thus, the neighbor environmental pharmacophore changes due to the ith 
mutation can be written as 𝑐𝑜𝑠𝑁;<(𝑖) = 𝑐𝑜𝑠𝑖𝑛(𝑝';))))))⃗ , 𝑝'<))))))⃗ ) and 𝑟𝑚𝑠𝑁;<(𝑖) = 𝑟𝑚𝑠𝑑(𝑝𝑛';)))))))))⃗ , 𝑝𝑛'<)))))))))⃗ ). 
Here, a contact is defined for two residues if the distance of any heavy atoms from them is below 
4.2 Å in the protein structure. We consider two types of properties (l=ls+lp), where one is related 
with single residue (Hydrophobic, aromatic rings and charge, volume and weight) and another with 
paired residues (polarity and hydrogen bond). The neighbor pharmacophore vector corresponding 
to single residue (or paired residues) is denoted by 𝑝𝑛'(_1L))))))))))))⃗  (or 𝑝𝑛'(_1M)))))))))))))⃗ ), where the corresponding 
pharmacophore changes are then calculated by 

⎩
⎪
⎨

⎪
⎧cos	(𝑃;))))⃑ , 𝑃<)))))⃑ ) =

𝑃;))))⃑ ∙ 𝑃<)))))⃑

X𝑃;))))⃑ X ∙ X𝑃<)))))⃑ X

𝑟𝑚𝑠𝑑Y𝑃;))))⃑ , 𝑃<)))))⃑ Z = [∑ Y𝑃;\ − 𝑃<\Z
0^

\I.
𝐿

																																			(𝑆1) 

This group of features is listed as Features 25-32 in Table S2. 
In addition to the local and environmental pharmacophores, we consider the common 

physicochemical properties, including the volume and weight from the wild-type and mutant 
residues, which are listed as Feature 33-38 in Table S2. 

 
Evolutionary profiles.  

Evolution is a major driven force for protein structure and function determination, where 
sequence profiles from multiple sequence alignments contain information on how the protein 
families evolve. To identify distant-homology relations between sequences, three sequence profiles 
are collected in DAMpred by PSI-BLAST [6], LOMETS [7] and Pfam [8] separately. 

PSI-BLAST profile. The wild-type and mutant sequences are searched through the Uniref90 
non-redundant sequence database by PSI-BLAST [6] with three iterations and an E-value cutoff 
0.001. The resultant sequences are then passed to Clustal Omega [9] to obtain multiple sequence 
alignments (MSAs), and the position-specific independent count (PSIC) scores are then calculated 
from both MSAs from wildtype and mutant sequences. At the mutant position i, the PSIC score for 
both wild-type (𝑆-;) and mutant (𝑆-<) amino acids are defined by  
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    (S2) 

where 𝑞k is the background frequency of amino acid 𝑎 in the MSA; 𝑝-k is the probability of the 
amino acid 𝑎 at the ith alignment position 𝑖, with 𝑛(𝑎, 𝑖)qrr being the number of counts of 𝑎 at the 
ith position. Compared to the widely used position-specific scoring matrix (PSSM) score [10], the 
major advantage of the PSIC is that 𝑛(𝑎, 𝑖)qrr  is calculated from the overall similarity of the 
sequences that share the amino acid type at this position with the help of statistical features, which 
allows the fast computation of the true position-specific sequence weights [11]. 

In addition, the Jensen-Shannon divergence (JSD) score is an index measuring the extent of the 
evolutionary conservation of each residue position along the protein chain, which has been 
previously shown to provide state-of-the-art performance in identifying catalytic sites and ligand 
binding sites [12, 13]. The JSD score in DAMpred is calculated by [12] 

⎩
⎨

⎧JSD-k = 𝜆𝑝-k𝑙𝑜𝑔
𝑝-k
𝑐-k

+ (1 − 𝜆)𝑞k𝑙𝑜𝑔
𝑞k
𝑐-k

JSD- = y 𝐽𝑆𝐷-k
k∈}}

																													(𝑆3) 

where 𝑐-k = 𝜆𝑝-k + (1 − 𝜆)𝑞k and λ=0.5. All the PSI-BLAST based features are listed as Features 
39-45 in Table S2. 

LOMETS profile. Multiple threading programs, LOMETS [7], are used to thread the wild-type 
and mutant sequences through a non-redundant PDB library to identify both homologous and 
analogous proteins. These sequences have often a low sequence identity to the query but usually 
adopt similar structural folds due to the integration of structural elements in the threading 
alignments. A threading based MSA is constructed by mapping the structural templates to the query 
based on the pair-wise threading alignments. The PSIC scores are calculated based on the Eq. (10), 
where these features are listed as Features 46-48 in Table S2. 

Pfam profile. The Pfam database [8] contains a large collection of protein domain families, each 
represented by a hidden Markov model (HMM). The query sequence is matched by Pfam-scan 
through the Pfam-A library to identify homologous Pfam families. If a Pfam family is identified 
with the mutant positions included in the MSA, DAMpred will read the profile-HMM to obtain the 
match or insert emission probability of wild type and mutant amino acid types, based on the mutant 
position matching with the domain residue or ‘-’ shown in result file of Pfam-scan, respectively. 
These features are listed as Features 49-51 in Table S2. 

 
The contact environments in SPRING biological assembly 

DAMpred considers four types of the contact-environment based mutation features deduced 
from the complex structural models built by the dimeric threader, SPRING [14]; these include the 
number of intramolecular contacts (𝐼𝑛𝑡𝑟𝑎 ), the number of intramolecular contacts involving 
functional residues (FunIntra), the number of intermolecular contacts (𝐼𝑛𝑡𝑒𝑟), and the number of 
intermolecular contacts involving functional residues (𝐹𝑢𝑛𝐼𝑛𝑡𝑒𝑟). Figure S13 diagrammatized 
above contact groups. 

The contacts are defined based on the structure in the target proteins, where two residues from 
the same chain (or from two BioUnit chains) are considered as in contact if the minimum distance 
of any heavy atoms from the two residues is below 5 (or 6) Å. To examine if the mutation involves 
a functional residue, the query sequence is searched by BLASTp through the UniProt human 
sequence database with one iteration and an E-value cutoff 0.001, where up to 5 homologous 
sequences with a sequence identity in [0.3, 0.8] are selected. A residue is defined as functional, if 
the aligned residue from any of the 5 homologies is annotated, based on the UniProt accession, as 
ACT_SITE, BINDING, CARBOHYD, CA_BIND, COILED, COMPBIAS, CROSSLNK, 
DISULFID, DNA_BIND, INIT_MET, INTRAMEM, LIPID, METAL, MOD_RES, MOTIF, 
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NON_STD, NP_BIND, PEPTIDE, PROPEP, REGION, PEPEAT, SIGNAL, SITE, TRANSIT, 
TRANSMEM, or ZN_FING. A contact is considered as functional, if any of the interacting residues 
is functional. 

In addition, DAMpred considers an enlarged contact environment by counting the residues that 
are in contact with the contacting partners of the mutated residues, called indirect contacts. 
Similarly, if any of the indirect contact partners are functional, the mutation may result in an indirect 
effect on the residues and the contact is therefore counted as an indirectly functional contact. This 
group of features is listed as Feature 52-59 in Table S2. 

 
I-TASSER modeling and structure-based feature extraction.  

I-TASSER [15, 16] was used to construct 3D models for both wild-type and mutant sequences, 
where two groups of structure-based features, on protein surface and physics-based energy terms, 
are extracted from the I-TASSER models. 

Surface-based features. This feature group describes the properties of target residues involved 
in protein surfaces. These include the likelihood score of the wild-type residue to bind with ligands, 
which is calculated by ConCavity [13] based on the surface geometry of the I-TASSER models. In 
addition, we count the depth score as the distance of atoms or residue to its closest molecule of bulk 
solvent, which is calculated by the Depth program [17]. 

Physics-based features. The second structure-based feature group is physics-based energy 
potentials evaluating the atomic interactions based on the I-TASSER models. Three kinds of energy 
terms were considered. The first is from EvoDesign [18], which combines the log-odds profile of 
the analogous structures of the I-TASSER models searched from the PDB and the fitness score of 
the mutant residues on the I-TASSER models that are built on secondary structure, backbone 
torsion angle, and solvent accessibility predictions. The second term is the free-energy changes 
(𝛥𝛥𝐺 ) induced by the mutations, calculated by the SEF program [19], which counts for the 
probability distributions of rotamer types with specific secondary structure, solvent accessibility, 
and backbone Ranmachandran torsional angles. Here, if the SEF score is lower than zero, it means 
that this mutation increased the stability of this protein. The third term is the preferences of the 
side-chain conformers calculated by CIS-RR [20]. Here, the structural model for the mutant 
sequence is first reconstructed by CIS-RR from the wild-type I-TASSER models, while the 
empirical van der Waals potential and the rotamer preference score are then calculated for both 
wild-type and mutant structure. 
 
Text S3. Derivation of the Bayes-guided artificial neural network (BANN) model 

To determine the 𝑛 + 1 𝛼-(F) functions in Eq. (3), Artificial Neural Network (ANN) is chosen, 
where the architecture of the special network structure is depicted in Fig. S10. This network has 
two hidden layers which consist of 𝑁� sigmoid nodes (Layer #1) and 𝑛 + 1 linear nodes (Layer 
#2), respectively. A bias neuron is invented in the input of a network to increase the capacity of the 
network. Let 𝑥�- be the ith input of the node j, 𝑤�- be the weight for ith input of the node j, and 
𝑛𝑒𝑡� = ∑ 𝑤�-𝑥�--  be the weighted sum of all inputs of the node j. If one node in Layer-2 has an input 
from node j from Layer-1, we set these nodes from Layer-2 as Down(j). The squashing function in 
the sigmoid nodes as the output of Ni

1 can be written as  

σ� = 1 �1 + 𝑒���YFq�����Z�	� 																																																		(𝑆4) 

where 𝛾� and 𝐶� are the slope and the inflection point, respectively. In this BANN structure, we 
only need to learn 𝑤�-.  between input and Layer-1 and 𝑤�-0 between Layer-1 and Layer-2; but we 
don’t need to learn the weight of 𝑝- = log𝑃(𝑓-|𝐶E)  for 𝑆�  and 𝑆�  or 𝑝- = log(𝑃(𝑓-|𝐶�) −
log	(𝑃(𝑓-|𝐶�) for 𝑆� between Layer-2 and the final output, which represents the possibility of the 
mutation feature 𝑓- associated with the class 𝐶E. 

We choose back propagation training approach to build the network structure. If we have 𝑁� 
mutations for which we know the target label 𝑡� (disease-associated or neural), we should be able 



 

 5 

to estimate the three sets of parameters (𝑤))⃗ = �𝑤-��, 𝛾 = �𝛾��, 𝐶 = {𝐶�}) by minimizing the training 
error of 

𝐸Y𝑤))⃑ , 𝛾⃑, 𝐶Z ≡
1
2𝑁�

y(𝑡� − 𝑜�)0 + 𝜇y𝑤�-0
-,�

�¥

�I.

																																(𝑆5) 

Here, 𝑜� is the output of ANN which is the dependent variable and its corresponding independent 
variables are 𝑤))⃑ , 𝛾⃑ and 𝐶. The penalty term (𝜇 ∑ 𝑤�-0-,� ) is used to guide the gradient descent to 
search for smaller weight vectors, for decreasing the risk of over fitting, where µ is the momentum.  

The idea of stochastic gradient descent is to calculate the weight update according to the 
increment of each individual sample error. It starts with an arbitrary initial weight vector, and then 
modifies the vector at a small rate. At each step, the modified weight vector is generated in the 
steepest direction along the error surface, until the global minimum error point is obtained. To 
calculate the steepest direction along the error surface, this direction can be obtained by calculating 
the derivative of each component of 𝐸(𝑤))⃑ , 𝛾⃑, 𝐶). Here, we use an example to illustrate how to update 
𝑤))⃑ ,	𝛾 and 𝐶 with one sample (𝑁L = 1), which include three steps. 

Step-1: calculation of the weight of 𝒘𝒋𝒊
𝟐  and 𝒘𝒋𝒊

𝟏 . Because  𝛾⃑ and 𝐶   are independent of 
weights 𝑤))⃑ , so 𝛾⃑ and 𝐶 can be considered as constant when error function is derivative of 𝑤))⃑ . The 
updated weight is  

𝑤))⃗ ← 𝑤))⃗ + ∆𝑤))⃗ 																																																																									(𝑆6) 
where the gradient training rule is  

b
∆𝑤))⃗ = −𝜂∇	𝐸(𝑤))⃑ )																																																																						

∇𝐸(𝑤))⃑ ) ≡ ²
𝜕𝐸

𝜕𝑤...
,
𝜕𝐸

𝜕𝑤.0.
,⋯ ,

𝜕𝐸
𝜕𝑤�´(Fµ.).

,
𝜕𝐸

𝜕𝑤..0
,⋯ ,

𝜕𝐸
𝜕𝑤�´(Fµ.)0

¶					(𝑆7) 

Here, η is the learning rate. We suppose Eº(𝑤))⃑ , 𝛾⃑, 𝐶) ≡ .
0
(𝑡� − 𝑜�)0, and have 

⎩
⎪
⎨

⎪
⎧∆𝑤�- = −𝜂

𝜕𝐸
𝜕𝑤�-

= −𝜂 »
𝜕𝐸,

𝜕𝑤�-
+ 2µ𝑤�-¼

𝜕𝐸,

𝜕𝑤�-
=

𝜕𝐸,

𝜕𝑛𝑒𝑡�
×
𝜕𝑛𝑒𝑡�
𝜕𝑤�-

=
𝜕𝐸,

𝜕𝑛𝑒𝑡�
× 𝑥�-

																																						(𝑆8) 

The remaining task is to deduce 𝜕𝐸º/𝜕𝑛𝑒𝑡�,. We can consider two situations in turn: the weight 
𝑤�-0 for Layer-2 and the weight 𝑤�-. for Layer-1.  

In Layer 2, we mark 𝜕𝑛𝑒𝑡� as 𝜕𝛼�, 𝑥�- as 𝑥�-0, and 	𝑤�- as 𝑤�-0. The 𝜕𝐸º/𝜕𝑛𝑒𝑡� can be obtained 
by 

𝜕𝐸,

𝜕𝑛𝑒𝑡�
=
𝜕𝐸,

𝜕𝛼�
=
𝜕𝐸,

𝜕𝑜�
×
𝜕𝑜�
𝜕𝛼�

																																															(𝑆9) 

where 

⎩
⎪
⎨

⎪
⎧𝜕𝐸,

𝜕𝑜�
=
𝜕(12 (𝑡� − 𝑜�)

0)
𝜕𝑜�

= −(𝑡� − 𝑜�)	

𝜕𝑜�
𝜕𝛼�

=
𝜕𝑛𝑒𝑡�
𝜕𝛼�

= 𝑝�	
																																	(𝑆10) 

If we define 𝛿�,0 by 

𝜕𝐸,

𝜕𝑛𝑒𝑡�
=
𝜕𝐸,

𝜕𝛼�
= −𝑝�(𝑡� − 𝑜�) = −𝛿�,0																																				(𝑆11) 
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we will have 

∆𝑤�-0 = −ηY−𝑝�(𝑡� − 𝑜�)𝑥�-0 + 2µ𝑤�-0Z = η𝛿�,0𝑥�-0 − 2ηµ𝑤�-0													(𝑆12) 

where 𝛿�,0 = 𝑝�(𝑡� − 𝑜�). 
In layer 1, we mark 	𝑥�- as 𝑥�-. and 	𝑤�- as 𝑤�-.. The 𝜕𝐸º/𝜕𝑛𝑒𝑡� can be obtained by 

𝜕𝐸,

𝜕𝑛𝑒𝑡�
= y

𝜕𝐸,

𝜕𝛼E
×
𝜕𝛼E
𝜕𝑛𝑒𝑡�E∈�Â;F(�)

= y −
E∈�Â;F(�)

𝛿E,0
𝜕𝛼E
𝜕𝑛𝑒𝑡�

												= y −
E∈�Â;F(�)

𝛿E,0
𝜕𝛼E
𝜕𝜎�

×
𝜕𝜎�
𝜕𝑛𝑒𝑡�

= y −
E∈�Â;F(�)

𝛿E,0𝑤E�0 ×
𝜕𝜎�
𝜕𝑛𝑒𝑡�

												= y −
E∈�Â;F(�)

𝛿E,0𝑤E�0 ×
𝜕 1
1 + 𝑒���YFq�����Z

𝜕𝑛𝑒𝑡�

												= y −
E∈�Â;F(�)

𝛿E,0𝑤E�0𝜎�(1 − 𝜎�)𝛾�

											(𝑆13) 

If we define 𝛿�,. by 
𝜕𝐸,

𝜕𝑛𝑒𝑡�
= −𝛾�𝜎�Y1 − 𝜎�Z y 𝛿E,0𝑤E�0

E∈�Â;F(�)

= −𝛾�𝛿�,.																			(𝑆14) 

we will have 

∆𝑤�-. = η𝛾�𝛿�,.𝑥�-. − 2ηµ𝑤�-.																																												(𝑆15) 

where 𝛿�,. = σÄ(1 − σÄ)∑ δ\,0w\Ä
0

\∈ÆÇÈÉ(Ä) . 
Step-2: calculation of ∆𝜸𝒋 for layer 1. Because weights 𝑤))⃑  and 𝐶 are independent of 𝛾⃑, so 𝑤))⃑  

and 𝐶 can be considered as constant when error function is derivative of  𝛾⃑. So we can update 𝛾⃑ by 

 𝛾 ← 𝛾⃑ + ∆𝛾⃑																																																																						(𝑆16) 
where the gradient training rule is 

b
∆𝛾 = −𝜂∇𝐸(𝛾⃑)

∇𝐸(𝛾⃑) ≡ ²
𝜕𝐸
𝜕𝛾.

,
𝜕𝐸
𝜕𝛾.

,⋯ ,
𝜕𝐸
𝜕𝛾�´

¶		 																																																			(𝑆17) 

∆𝛾� can be written as 

⎩
⎪
⎨

⎪
⎧∆𝛾� = −𝜂

𝜕𝐸
𝜕𝛾�

𝜕𝐸
𝜕𝛾�

=
𝜕𝐸
𝜕𝜎�

×
𝜕𝜎�
𝜕𝛾�

=
𝜕𝐸
𝜕𝜎�

× 𝜎�(1 − 𝜎�)(𝑛𝑒𝑡� − 𝐶�)
																				(𝑆18) 

where ËÌ
ËÍ�

= ∑ ËÌ
ËÎÏ

× ËÎÏ
ËÍ�

=E∈�Â;F(�) ∑ ËÌ
ËÎÏ

× 𝑤E�0 = −∑ 𝜂E,0 × 𝑤E�0E∈�Â;F(�)E∈�Â;F(�) . Thus, 
we have 
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∆𝛾� = −𝜂 Ð(− y 𝜂E,0 × 𝑤E�0)
E∈�Â;F(�)

𝜎�Y1 − 𝜎�ZY𝑛𝑒𝑡� − 𝐶�ZÑ

							= 𝜂Y𝑛𝑒𝑡� − 𝐶�Z𝜎�Y1 − 𝜎�Z y 𝜂E,0 × 𝑤E�0 = 𝜂Y𝑛𝑒𝑡� − 𝐶�Z
E∈�Â;F(�)

𝛿�,.

										(𝑆19) 

Step-3: calculation of ∆𝑪𝒋 for layer 1. Because weights 𝑤))⃑  and 𝛾⃑ are independent of  𝐶, so 𝑤))⃑  
and 𝛾 can be considered as constant when error function is derivative of 𝐶. So we can update 𝐶 by  

𝐶 ← 𝐶 + ∆𝐶																																																																(𝑆20) 
where the gradient training rule is 

Ó
∆𝐶 = −𝜂∇𝐸Y𝐶Z

∇𝐸Y𝐶Z ≡ ²
𝜕𝐸
𝜕𝐶.

,
𝜕𝐸
𝜕𝐶.

,⋯ ,
𝜕𝐸
𝜕𝐶�´

¶
																																					(𝑆21) 

∆𝐶� can then be calculated by  

∆𝐶� = −𝜂
𝜕𝐸
𝜕𝐶�

𝜕𝐸
𝜕𝐶�

=
𝜕𝐸
𝜕𝜎�

×
𝜕𝜎�
𝜕𝐶�

=
𝜕𝐸
𝜕𝜎�

𝜎�Y1 − 𝜎�ZY−𝛾�Z

𝜕𝐸
𝜕𝜎�

= y
𝜕𝐸
𝜕𝛼E

×
𝜕𝛼E
𝜕𝜎�

=
E∈�Â;F(�)

y
𝜕𝐸
𝜕𝛼E

× 𝑤E�0
E∈�Â;F(�)

								= − y 𝜂E,0 × 𝑤E�0
E∈�Â;F(�)

																			(𝑆22) 

Thus, we have 

∆𝐶� = −𝜂Y−𝛾�Z𝜎�Y1 − 𝜎�Z Ô− y 𝜂E,0 × 𝑤E�
E∈�Â;F(�)

Õ = −𝜂𝛾�𝛿�,.								(𝑆23) 

In summary, at each step of minimization, the gradient descent training rules for second layer 
and first layer is described by  

⎩
⎪
⎨

⎪
⎧ ∆𝑤�-0 = η𝛿�,0𝑥�-0 − 2ηµ𝑤�-0

∆𝑤�-. = ηγÄδÄ,.𝑥�-. − 2ηµ𝑤�-.

∆𝛾� = η𝛿�,.(𝑛𝑒𝑡� − 𝐶�)
∆𝐶� = −ηδÄ,.𝛾�

																																														(𝑆24) 

where η is the learning rate and 

b
𝛿�,0 = 𝑃�(𝑡� − 𝑜�)

𝛿�,. = 𝛾�σÄ(1 − σÄ) y δ\,0w\Ä
0

\∈ÆÇÈÉ(Ä)

																														(𝑆25) 

The initial values were tested to give a nice influence on the results of the parameter estimation. 
The inflection point CÄ  was initially set to 0.5, the slope γÄ  to 1, and the learning rate η  and 
momentum µ to 0.001, respectively. To avoid the local optimization trap, we randomly divided the 
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training dataset into 10 parts and then updated the weights based on the minimization of the 
increment of the learning errors in a loop, in a similar way as in stochastic gradient descent. 

Here, the main difference between the proposed BANN scheme and the traditional ANN is on 
the output layer. The weight of output layer from the traditional ANN needs to be learned based on 
training rules, but the one from BANN is calculated as the logarithm of the posterior probabilities 
of the features obtained from the disease-associated and neutral datasets. One advantage of the new 
training protocol is the integration of the inherent probability of the different features in the 
network, which can help avoid over-fitting and also increases the convergent speed and 
generalizing ability. 
 
Test S4. Method evaluation 

Evaluation criterions. The prediction results are mainly evaluated by the accuracy (ACC), 
Matthews correlation coefficient (MCC), sensitivity(±) and specificity(±):  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

Ü(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(+) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(−) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃		

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(+) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(−) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

																					(𝑆26) 

Here, TP (FP) is the number of correctly (incorrectly) identified disease-associated mutations and 
TN (FN) is the number of correctly (incorrectly) identified neutral mutations. While ACC is one of 
the most common evaluation criterions when assessing the performance of a predictor, the MCC 
considers both true and false positives and negatives which is generally regarded as a more balanced 
measure that can be used even if the classes are of very different sizes. Sensitivity(+) refers to the 
true positive rate (TPR) or recall, Specificity(+) refers to positive predictive value (PPC) or 
precision, Sensitivity(-) is the true negative rate (TNR), and Specificity(-) the negative predictive 
value (NPV). All these criterions are used to examine the performance of our method in different 
aspects. 
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Supporting Tables 

Table S1. The distribution of proteins and mutations in the ten folds of D10634 for protein-level 
cross-validation experiment. 
 

 Total Subsets 
1 2 3 4 5 6 7 8 9 10 

#Dma 5355 536 536 535 534 533 534 536 536 538 537 
#Nmb 5279 525 526 529 529 525 536 528 527 527 527 
#Tmc 10634 1061 1062 1064 1063 1058 1070 1064 1063 1065 1064 
#Dpd 617 70 50 84 51 45 87 68 65 49 48 
#Npe 1836 133 144 154 199 198 240 109 230 221 208 
#Tpf 2154 190 162 209 215 213 295 151 258 237 224 

 
a#Dm: the number of disease-associated mutations. 
b#Nm: the number of neutral mutations 
c#Tm: the total number of all mutations 
d#Dp: the number of proteins with disease-associated mutations 
e#Np: the number of proteins with neutral mutations 
f#Tp: the total number of all proteins 
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Table S2. Summary of 70 features used in DAMpred and their distributions in D10634. ‘DM’ 
refers to disease-associated mutations, ‘NM’ to neutral mutations, and ‘p-value in M-W test’ to p-
value in the Mann-Whitney test for determining whether two datasets are drawn from the same 
distribution. If the p-value is lower than 0.05, the hypothesis that the distributions of the two 
datasets are the same can be rejected. 
 

Feature 
Class No Feature 

    Mean    MCC p-value in 
M-W test Description 

DM      NM Cutoff Value 
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P r
op

er
tie
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Pharmacophore for the wild-type residues 
1 HPw 2.90 2.17 2 0.16 3.10E-078 Hydrophobic residue 
2 noHPw 4.47 3.89 6 0.14 1.49E-044 Non-hydrophobic residue 
3 ARw 1.28 0.92 2 0.14 1.31E-058 Aromatic rings 
4 noARw 6.09 5.13 6 0.17 3.84E-093 Non-aromatic rings 
5 PCw 0.86 0.77 3 0.05 7.99E-006 Positive charge 
6 NCw 0.72 0.75 4 0.02 2.07E-002 Negative charge  
7 noCw 5.79 4.53 5 0.21 1.20E-132 Neutral charge  
8 BPw 1.67 1.26 2 0.09 1.38E-013 Both wild-type and neighbor AA are polar 
9 OPw 2.83 2.21 3 0.14 1.33E-065 Either of wild-type and neighbor AA is polar 
10 NPw 1.87 1.59 5 0.10 3.63E-006 Both wild-type and neighbor are nonpolar t 
11 ACw 9.12 8.05 12 0.12 1.19E-021 The count of reside being the hydrogen acceptor 
12 DOw 5.59 4.83 8 0.14 1.94E-032 The count of reside being the hydrogen donor 
Pharmacophore for the mutant residues 
13 HPm 3.04 2.21 3 0.18 2.40E-098 Hydrophobic 
14 noHPm 4.52 3.72 6 0.17 1.68E-081 Non-hydrophobic 
15 ARm 1.33 0.95 1 0.15 3.22E-063 Aromatic rings 
16 noARm 6.23 4.98 7 0.21 4.00E-144 Non-aromatic rings 
17 PCm 0.83 0.68 3 0.07 3.82E-015 Positive charge 
18 NCm 0.69 0.69 4 0.03 1.45E-001 Negative charge  
19 noCm 6.04 4.55 5 0.22 3.60E-161 Neutral charge  
20 BPm 1.38 1.21 3 0.05 3.57E-002 Both wild-type and neighbor AA are polar 
21 OPm 3.22 2.25 5 0.19 1.20E-121 Either of wild-type and neighbor AA is polar 
22 NPm 1.95 1.47 5 0.13 4.82E-021 Both wild-type and neighbor are nonpolar t 
23 ACm 9.31 7.84 15 0.15 1.18E-035 The count of reside being the hydrogen acceptor 
24 DOm 5.69 4.75 7 0.16 9.94E-042 The count of reside being the hydrogen donor 
Mutation-induced environmental pharmacophore changes 
25 cosWM 0.74 0.82 0.9 0.22 2.00E-133 cosin for the pharmacophores of wild-type and mutant residues 
26 rmsWM 0.47 0.37 0.4 0.22 1.60E-125 RMSD for pharmacophores of wild-type and mutant residues 
27 cosNWM 0.94 0.95 1.0 0.08 7.55E-019 cosin for neighbor pharmacophores of wild-type and mutant 
28 rmsNWM 2.09 1.52 1.7 0.22 5.10E-154 RMSD for neighbor pharmacophores of wild-type and mutant 
29 cosNSWM 0.92 0.93 1.0 0.11 2.02E-022 cosin for neighbor pharmacophores of wild-type and mutant residues 

related with single residue 
30 rmsNSWM 1.77 1.24 1.8 0.24 1.30E-176 RMSD for neighbor pharmacophores of wild-type and mutant 

residues related with single residue 
31 cosNPWM 0.92 0.95 0.8 0.06 2.53E-003 cosin for neighbor pharmacophores of wild-type and mutant residues 

related with residue paired 
32 rmsNPWM 2.87 2.21 4.2 0.14 3.02E-042 RMSDfor neighbor pharmacophores of wild-type and mutant 

residues related with residue paired 

Other physicochemical properties 
33 Volw 2.83 2.86 1.9 0.10 9.84E-002 The volume of wild-type residue 
34 Volm 2.91 2.88 3.2 0.11 3.86E-008 The volume of mutant residue 
35 dVol 0.08 0.02 0.7 0.15 1.23E-008 The volume difference 
36 Ww 132.0 130.81 75 0.10 5.92E-003 The weight of wild-type residue 
37 Wm 136.2 131.57 165 0.11 5.60E-012 The weight of mutant residue 
38 dW 4.23 0.76 42 0.17 5.46E-006 The molecular weight difference 

Ev
ol

ut
io

na
ry

 
 P

ro
fil

es
 

PSI-BLAST profile scores 
39 PSICw 1.57 0.91 1.2 0.43 0.00E-000 The PSIC score for wild-type residue 
40 PSICm -0.42 0.24 -0.1 0.45 0.00E-000 The PSIC score for mutant residue 
41 dPSIC -1.99 -0.66 -1.1 0.54 0.00E-000 The PSIC score difference 
42 JSDw 0.03 0.03 0.04 0.11 3.70E-001 The JSD score for wild-type residue 
43 JSDm 0.02 0.03 0.03 0.11 1.22E-016 The JSD score for mutant residue 
44 dJSD 0.00 0.00 -0.01 0.10 1.99E-012 The JSD score difference 
45 JSDi 0.47 0.32 0.5 0.32 2.20E-273 The JSD score at mutant position i 
LOMETS profile scores 
46 tPSICw 0.78 0.45 0.8 0.22 1.00E-149 The PSIC score for wild-type residue 
47 tPSICm -0.30 -0.02 0.04 0.19 1.50E-108 The PSIC score for mutant residue 
48 dtPSIC -1.08 -0.47 -0.7 0.28 8.80E-243 The PSIC score difference 
Pfam profile scores 
49 Pfamw 1.83 2.40 1.5 0.32 9.40E-178 The Pfam score for wild-type residue 
50 Pfamm 3.66 3.00 3.0 0.29 7.20E-119 The Pfam score for mutant residue 
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51 dPfam 1.83 0.59 1.1 0.38 1.20E-298 The Pfam score difference 

C
on

ta
ct

   
  

En
vi

ro
nm

en
ts

   
  

Directly contacted residues 
52 Intra 14.51 11.35 15 0.29 5.80E-245 The number of intramolecular contacts 
53 FunIntra 4.90 3.55 15 0.13 2.58E-026 The number of intramolecular functional contacts 
54 Inter 3.82 3.67 29 0.03 1.25E-001 The number of intermolecular contacts 
55 FunInter 0.54 0.43 25 0.02 6.29E-002 The number of intermolecular functional contacts 
Indirectly contacted residues 
56 CIntra 65.98 51.58 55 0.25 4.10E-180 The number of intramolecular indirectly contacts 
57 CFunIntra 22.03 16.51 60 0.12 8.25E-025 The number of intramolecular functional indirectly contacts 
58 CInter 23.55 21.26 149 0.05 4.85E-002 The number of intermolecular indirectly contacts 

 59 CFunInter 9.59 8.25 139 0.03 8.35E-004 The number of intermolecular functional indirectly contacts 

I-
TA

SS
ER

 m
od

el
  

B
as

ed
 P

ro
pe

rti
es

 
 

Protein surface regions favorable for interactions 
60 CS 0.08 0.04 0.04 0.18 8.66E-093 the ConCavity score for the wild-type score 
61 Depth 6.72 5.38 5.6 0.27 2.60E-204 The average distance of atoms of wild-type residue to its closest 

molecule of bulk solvent, 
The energy function 
62 ED 632.06 587.51 556 0.09 6.46E-011 The EvoDesign score 
63 ddG 1.62 0.52 3.0 0.22 8.97E-091 The stability changes upon mutation 
64 VDWw -343.4 -332.43 -358 0.07 1.63E-004 Van Der Waals potential of the wild-type residue from CISS-RR 
65 VDWm -331.3 -326.79 -1041 0.06 3.73E-002 Van Der Waals potential of the mutant residue from CISS-RR 
66 dVDW 12.11 5.65 2.3 0.24 1.20E-155 Van Der Waals potential difference 
67 RTw 460.13 401.52 579 0.11 3.66E-027 rotamer term which measures the preferences of the wild-type side-

chain conformers from CISS-RR. 
68 CISRRw 116.69 69.09 -11 0.30 5.70E-119 CIS-RR score for the wild-type residue 
69 CISRRm 129.06 74.96 -5 0.30 1.30E-149 CIS-RR score for the mutant residue 
70 dCISRR 12.37 5.87 4.5 0.21 1.40E-115 CIS-RR score difference 

 
 
Table S3. Comparison of different machine-learning methods used for training the classification 
model of disease and neutral mutations. The data are generated by the protein-level 10-fold cross 
validation on the D10634 dataset. Bold fonts highlight the best predictor in each category. 
 

Methodsa GBC KNC SVC ANN BANN 
 Model trained by top 20 featuresb 

MCC 0.559 0.552 0.561 0.575 0.589 
ACC 0.779 0.776 0.780 0.787 0.795 
SEN+ 0.784 0.756 0.779 0.795 0.817 
SPE+ 0.779 0.789 0.784 0.785 0.784 
SEN- 0.775 0.795 0.782 0.780 0.772 
SPE- 0.779 0.763 0.777 0.789 0.806 
p-valuec 2.60.E-14 2.80E-49 7.22E-29 2.25E-10 *7.83E-6 
 Model trained by all 70 features 
MCC 0.566 0.504 0.570 0.580 0.601 
ACC 0.783 0.748 0.785 0.790 0.800 
SEN+ 0.783 0.669 0.777 0.795 0.812 
SPE+ 0.786 0.799 0.782 0.790 0.796 
SEN- 0.783 0.830 0.793 0.785 0.788 
SPE- 0.781 0.716 0.778 0.791 0.805 
p-valuec 5.39E-6 1.85E-138 1.47E-16 3.99E-3  

 
aTraining methods: GBC: gradient boosting classifier; KNC: k-nearest neighbor classifier; SVC: support 
vector classifier; ANN: artificial neural network; BANN: Bayes-classifier guided ANN. 
bModels are trained on the top-20 features ranked by the p-values in the Table S2. 
cp-value in McNemar’s Test is calculated for each comparison related to corresponding BANN, where ‘*’ 
denote the p-value between BANN with top 20 features and BANN with all 70 features. 
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Supporting Figures 
 

 
Figure S1. Pipeline for data mapping and dataset construction. 
 
 
 

 

Figure S2. Disease-association mutation prediction on TP53 protein. (A) A Venn diagram 
showing the distribution of different mutations on the p53 protein. (B). I-TASSER model for the 
isoform P04637-1 of TP53 gene, where the transactivation, domain and COOH-terminal domains 
are marked in different colors. The residues in red are disease-associated mutations and those in 
blue are neutral mutations. The inset is a superposition of the I-TASSER model with the X-ray 
structure (PDBID: 1tsrA) in the core domain with a RMSD=1.07 Å, where homologous templates 
including 1tsrA has been excluded in the I-TASSER modeling simulations.  
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Figure S3. Quality of the protein structure predictions by I-TASSER and SPRING. (A, B) 
Histogram distribution of TM-score and RMSD of the I-TASSER models on 1974 proteins from 
the D10634 dataset. (C, D) Histogram distribution of TM-score and RMSD of the SPRING models 
on 2116 BioUnit complexes from the D10634 dataset. 
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Figure S4. Histogram distribution of evolution features on disease-associated and neutral 
mutations from the D10634 dataset. The left-most bar laying in Pfam diagrams with feature score 
< 0 indicate the mutant positions not to be found in the Pfam families. 
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Figure S5. Histogram distribution of Contact features on SPRING biological assembly on disease-
associated and neutral mutations from the D10634 dataset.  
 
 

 
 

Figure S6. Histogram distribution of the I-TASSER model based features on disease-associated 
and neutral mutations from the D10634 dataset. 
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Figure S7. Histogram distribution of pharmacophore features for wild-type residue on disease-
associated and neutral mutations from the D10634 dataset. 
 
 

 
Figure S8. Histogram distribution of pharmacophore features for mutant residue on disease-
associated and neutral mutations from the D10634 dataset. 
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Figure S9. Histogram distribution of pharmacophore difference features on disease-associated and 
neutral mutations from the D10634 dataset. 
 
 
 

 

 
Figure S10. Histogram distribution of chemical features on disease-associated and neutral 
mutations from the D10634 dataset. 
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Figure S11. Illustration of the environmental pharmacophore for physicochemical properties. 
 
 
 

 
 

Figure S12. Illustration of contact environments in the SPRING biological assembly. 
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Figure S13. Illustration of the Bayes-guided Artificial Neural Network (BANN) learning model. 
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