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Abstract

Motivation: More than half of proteins require binding of metal and acid radical ions for their struc-

ture and function. Identification of the ion-binding locations is important for understanding the

biological functions of proteins. Due to the small size and high versatility of the metal and acid rad-

ical ions, however, computational prediction of their binding sites remains difficult.

Results: We proposed a new ligand-specific approach devoted to the binding site prediction of 13

metal ions (Zn2þ, Cu2þ, Fe2þ, Fe3þ, Ca2þ, Mg2þ, Mn2þ, Naþ, Kþ) and acid radical ion ligands (CO32�,

NO2�, SO42�, PO43�) that are most frequently seen in protein databases. A sequence-based

ab initio model is first trained on sequence profiles, where a modified AdaBoost algorithm is ex-

tended to balance binding and non-binding residue samples. A composite method IonCom is then

developed to combine the ab initio model with multiple threading alignments for further improving

the robustness of the binding site predictions. The pipeline was tested using 5-fold cross valid-

ations on a comprehensive set of 2,100 non-redundant proteins bound with 3,075 small ion ligands.

Significant advantage was demonstrated compared with the state of the art ligand-binding meth-

ods including COACH and TargetS for high-accuracy ion-binding site identification. Detailed data

analyses show that the major advantage of IonCom lies at the integration of complementary ab ini-

tio and template-based components. Ion-specific feature design and binding library selection also

contribute to the improvement of small ion ligand binding predictions.

Availability and Implementation: http://zhanglab.ccmb.med.umich.edu/IonCom

Contact: hxz@imut.edu.cn or zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins perform their function by interacting with other ligand mol-

ecules. More than half of the proteins are found to have the binding

interaction with small acid radical and metal ions to stabilize their

structure and regulate the biological functions (Tainer et al., 1991;

Thomson and Gray, 1998). For instance, the binding of phosphate

ions (PO43�) with protein enzymes can result in phosphorylation

that turns the enzymes on and off and therefore alter their function

and activity (Burnett and Kennedy, 1954). Similarly, the binding of

the metal iron ions (Fe3þ) with hemoglobin is critical for their
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function for carrying and transferring oxygen through blood, a fun-

damental life process of all vertebrates (except for the fish family

channichthyidae) and some of invertebrates (Hsia, 1998); the bind-

ing of metal Zn2þ ions with nucleases and transcription factors plays

a critical structural role in the formation of Zn finger domains for

the receptor proteins to recognize DNA and RNA molecules and to

up- or down-regulate the expression of specific genes (Berg, 1990).

Therefore, accurate identification of the protein–ion-binding sites is

important for understanding the mechanism of protein function and

for new drug discovery.

Many computational methods have been proposed in the last

two decades for predicting general ligand-protein binding sites,

which can be roughly grouped into two categories of sequence-

based (Capra and Singh, 2007; Chen et al., 2014, 2016; Magliery

and Regan, 2005; Rausell et al., 2010) and structure-based

(Brylinski and Skolnick, 2008; Capra et al., 2009; Hendlich et al.,

1997; Laskowski, 1995; Roche et al., 2011; Roy et al., 2012; Roy

and Zhang, 2012; Wass et al., 2010; Yang et al., 2013b)

approaches. The sequence-based methods mostly rely on residue

conservation analyses under the assumption that ligand-binding resi-

dues are functionally important and therefore should be conserved

in the evolution. Although the sequence-based approaches have the

advantage in generating binding-site prediction from sequence

alone, the precision of the predictions is generally low as many non-

binding residues are often conserved due to the diverse roles such as

maintaining a stable structural fold. The structure-based approaches

are designed to predict the ligand binding sites either from structure

alone (e.g. by the identification of ‘pocket’ or ‘cavity’ on the surface

of protein structure) (Capra et al., 2009), or from structure-based

template comparison and transferal (Brylinski and Skolnick, 2008;

Roy and Zhang, 2012). More recently, a consensus-based approach,

COACH (Yang et al., 2013b), was proposed to combine multiple

structure-based methods, which demonstrated considerable advan-

tage over individual component predictors.

Despite the success, most of the above ligand-binding modeling

methods have been designed for the ligands of medium-to-large size

and are not optimal for small ligand prediction, such as for metal

and acid radical ions. Due to their small size, the interactions of the

small ions with proteins are often found significantly more versatile

and flexible compared with larger size ligands (Chakrabarti, 1993;

Yamashita et al., 1990). In particular, many of the current ligand-

binding prediction methods were developed using generic training

approaches built on all ligands without carefully discriminating dif-

ferent physicochemical characteristics for different types of ligand

molecules. Binding sites usually differ chemically and structurally in

different categories. The recent community-wide ligand-binding ex-

periments in CASP have suggested the advantage of evaluation on

the basis of chemo-type categories of ligand-binding (Schmidt et al.,

2011). An optimal training based on ligand-specific feature selec-

tions should help improve the small ion binding recognitions.

In this work, we aim to develop new algorithms devoted specific-

ally to the recognition of small ligand binding sites. Ligand-specific

features will be designed, with a focus on the thirteen metal and acid

radical ions that have been most frequently seen in the ligand-

binding databases and proven to be important to various protein

functions. To systematically examine the strengths and weaknesses

of the approach, large-scale benchmark tests will be conducted on a

comprehensive dataset containing all non-redundant ion-protein

binding interactions from the PDB, which will be compared with the

state of the art methods from both generic and ligand-specific bind-

ing prediction approaches.

2 Materials and methods

2.1 Dataset
This study focuses on the prediction of binding sites by thirteen

small ions ligands that are most frequently seen in literature and the

protein-binding databases, containing nine metal ligands (Zn2þ,

Cu2þ, Fe2þ, Fe3þ, Ca2þ, Mg2þ, Mn2þ, Naþ, Kþ) and four acid rad-

ical ligands (CO32�, NO2�, SO42�, PO43�). To benchmark the

binding site prediction methods, we collected a comprehensive non-

redundant set of ion-binding proteins from the BioLiP database

(Yang et al., 2013a), which have a pairwise sequence identity below

30%, all with a length above 50 residues.

This set contains 2100 protein entries bound with 3075 ion mol-

ecules, where 1374 proteins are with the metal ions and 726 with

the acid radical ions. There are overall 12 047 residues involved in

the ion binding, with 4.2 residues per ion on average (4.1 residues

per metal ion and 4.4 residues per acid radical ion). This is signifi-

cantly smaller than the average number of residues (10.2) bound

with other ligands in BioLiP. The detailed composition of the data-

set for different ion ligands is summarized in Table 1.

2.2 IonSeq
2.2.1 Method outline

We first present a sequence-based ab initio prediction method,

named IonSeq, which only uses information from protein sequence

(Fig. 1A). For a target residue in a protein sequence, the local se-

quence, with a sliding window (width¼L) centered at the target

residue, is used to extract multiple features containing position spe-

cific conservation scores and ligand-specific binding propensities.

The target residue is then represented as a feature vector for the ion-

binding training. Since the number of binding residues is far lower

than that of the non-binding residues in the training dataset, a modi-

fied AdaBoost algorithm is proposed to construct a set of multiple

training datasets to address the class imbalance issue. One predic-

tion model is constructed for each dataset using support vector ma-

chine (SVM), and a united model is finally created by the ensemble

classifier through the integration of the output of all different

models.

Table 1. Summary of the ion-protein interaction dataset

Category ID NProt
a Nion

b Nres
c NPos

d NNeg
e

Metal ions Zn2þ 142 210 3.4 697 93952

Cu2þ 110 172 3.2 535 38488

Fe2þ 227 321 3.9 1115 73813

Fe3þ 103 127 3.7 439 34113

Ca2þ 179 329 4.4 1360 119192

Mg2þ 103 137 2.9 391 76382

Mn2þ 379 577 3.5 1778 148618

Naþ 78 93 5.4 489 27408

Kþ 53 86 6.5 536 18776

Acid radical ions CO32- 62 78 4.1 316 22766

NO2- 22 26 3.8 98 8144

SO42- 303 485 4.4 2125 99729

PO43- 339 434 5.1 2168 112279

aNProt: Number of protein entries.
bNion: Number of ions bound with protein receptors.
cNres: Average number of binding residues per ion.
dNpos: Total number of true binding residues.
eNneg: Total number of non-binding residues.
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For a given protein sequence, the classifier outputs the probabil-

ities for each residue to be an ion-binding residue. The binding sites

are predicted in ligand-specific manner, i.e. one classifier is con-

structed for each specific ligand. A flowchart of IonSeq is outlined in

Figure 1A, with the details of feature design and training algorithms

explained below.

2.2.2 Feature design

Features used in IonSeq can be categorized into the four groups, i.e.

position specific score matrix (PSSM), local structure properties,

position and segment specific conservation scores, and ligand-

specific binding propensities.

(1) PSSM. Starting from the query sequence, a multiple sequence

alignment (MSA) of homologous proteins is constructed by PSI-BLAST

(Altschul et al., 1997) searching through the NCBI non-redundant

sequence dataset (NR) with the E-value threshold of 0.001 and three it-

erations. The training feature (y) is then extracted from the logistic

transformation of the PSSM scores (x) by

y ¼ 1

1þ 2�x : (1)

The width of the sliding window, L, which is used to calculate the

PSSM values, is a parameter to optimize during cross-validation.

Due to the distinction of different ligands, each ligand has its own

optimal window width; thus the number of dimension of the PSSM

feature is L*20. Here, we also tried a few other options for MSA

constructions, including Pfam and HHblits; but no improvement

was found compared with PSI-BLAST.

(2) Local structure properties. Three types of local structure fea-

tures are derived from the query sequence. First, the secondary struc-

ture is predicted by PSSpred (Yan et al., 2013), where a three-

dimensional Boolean vector is used to label the secondary structure

type (alpha-helix, beta-strand and coil). The relative solvent accessi-

bility (RSA) is predicted by the SOLVE program (Yang et al., 2015),

with only one Boolean value illustrating whether the residue is

buried (RSA < 25%) or exposed (RSA>25%). The backbone tor-

sion angles are predicted by ANGLOR (Wu and Zhang, 2008) and

2D real value is used to specify the u/w dihedral angles. Considering

the local window size L, the number of dimension of the predicted

local structure properties is L*6.

(3) Position and segment specific conservation scores. Since ion-

binding residues tend to be more conserved than others in evolution,

two conservation scores are considered in IonSeq, to enhance the

complementarity of the conservation information. Both scores are

built on the PSI-BLAST MSA. The first is residue position-specific

and scaled by the relative entropy (RE) and Jensen-Shannon diver-

gence (JSD) (Lin, 1991). Following Capra and Singh (Capra and

Singh, 2007), the RE and JSD scores are calculated by (Yang et al.,

2013b):

REi ¼
P

a2AApi að Þlog
pi að Þ
b að Þ

JSDi ¼ k
P

a2AApi að Þlog
pi að Þ
ci að Þ þ 1� kð Þ

X
a2AA

pi að Þlog
pi að Þ
ci að Þ

8>>><
>>>:

(2)

where pi að Þ is the probability of amino acid a at the ith position of the

MSA weighted by the Henikoff scheme (Henikoff and Henikoff,

1994), b(a) is the background frequency of a, ci is a frequency vector

defined by ci ¼ kpi þ ð1� kÞb, with k¼0.5 (Capra and Singh, 2007).

The second conservation score is segment-specific, which counts

for the sequence segment of the entire sliding window. To calculate

the segment conservation score, we first count the occurrence fre-

quency of each residue at the specific position of the local window by

pi;a ¼
ni;a þ

ffiffiffiffiffiffi
Ni

p
=21

Ni þ
ffiffiffiffiffiffi
Ni

p (3)

where ni,a is the occurrence number of residue a at position i of

MSA, Ni is the number of all residues at the position i, a runs for 20

different amino acids plus a virtual residue for the unknown residue

or the residue outside of the sequence, and
ffiffiffiffiffi
N
p

=21 is the pseudo-

count to offset the deficit in statistics. The relative frequency matrix

is then calculated by

mi;a ¼ log
pi;a

b að Þ (4)

where b(a) is the background frequency as defined in Equation (2).

The segment conservation score is finally calculated as a normalized

sum of the relative frequency element along all residues in the sliding

window, i.e.

Sseg ¼
PL

i¼1 mi;ai
�mi;min

� �
PL

i¼1 mi;max �mi;min

� � (5)

where mi,min and mi,max are the minimum and maximum value, re-

spectively, at the ith position of MSA.

(4) Ligand-specific binding propensity. Different ligands tend to

bind to different amino acids. To recall the binding tendency, in

Figure 2 (or Supplementary Fig. S1) we calculated the relative fre-

quency of different amino acids that are bound to four (or all thirteen)

different ions based on the protein-ligand complex structure data from

the BioLiP library (Yang et al., 2013a), where the frequency of the non-

binding residues from the same set of proteins is shown as a control.

As expected, there are some fluctuations in the distribution of

the background non-binding amino acids. However, the variations

of the binding amino acids are much larger, demonstrating the bind-

ing propensity of different ions for different amino acids. For in-

stance, four amino acids of H (HIS), C (CYS), D (ASP) and E (GLU)

stand out to have a much higher binding frequency for metal ion

Zn2þ than other amino acids, while the top four binding residues for

Ca2þare D (ASP), E (GLU), N (ASN) and G (GLY). On average, the

metal ions tend to bind more frequently with D (ASP), E (GLU) and

H (HIS) residues, while the acid radical ions tend to bind with H

(HIS) and R (ARG) residues.

To account for the ion-specific binding tendency as shown in

Figure 2, we define the propensity of amino acid a for binding the

ion I as:

PI
a ¼ ln

PI
a;B

PI
a:N

 !
(6)

Fig. 1. Flowchart of IonSeq (A) and IonCom (B) for ion-binding site

predictions

3262 X.Hu et al.
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where PI
a;B is the frequency of a at the binding site of I, and PI

a;N is

the frequency of a in non-binding site region of I. Again, a sliding

window with width L is used to calculate the feature vector based

on Equation (6). Here, we note that to eliminate over-fitting, the

propensity feature was calculated from all the protein-ion complexes

in BioLiP that are not included in the benchmark set listed in

Table 1.

In summary, given a window size L, there are overall 29*Lþ1

features used in training IonSeq models, which are summarized in

Supplementary Table S1. These features all have a positive impact to

the overall binding site predictions when tested one by one. We also

explored several physical chemical properties, including hydropho-

bicity, hydrophilicity, polarity, polarizability and average accessible

surface area of amino acids. However, the experimental results

showed that these features negatively impact the prediction accuracy

(Supplementary Table S2) and therefore are not included in the final

model.

2.2.3 SVM training with modified AdaBoost algorithm

Given the features designed, we use the SVM as the base classifier to

predict the ion-binding sites, where the LibSVM package (Chang

and Lin, 2011) is used to conduct SVM training with the radial basic

function selected as the kernel. The parameter k in kernel function

and the regularization parameter C are chosen on the cross-

validation.

As different training parameters can result in various perform-

ances, an ensemble classifier has been proposed for improving the

efficiency of individual classifiers (Dietterich, 2001). The basic

idea of the ensemble classifier is to train multiple base classifiers,

which are then combined to create a more robust and accurate

class label. The AdaBoost algorithm (Freund and Schapire, 1997)

is one of the widely used ensemble classifier methods, which trains

a series of base classifiers by randomly selecting samples from the

training dataset. At each round, the misclassified samples are as-

signed with an enhanced weight so that training in the subsequent

rounds concentrates on the samples that have not been correctly

learnt. The final output of the testing sample is the weighted votes

of the base classifiers. Although the individual classifiers can be

weak, as long as the performance of each classifier is slightly

better than random guessing, the final model by AdaBoost can be

proven to converge to a strong learner (Freund and Schapire,

1997).

In the ion-binding prediction, the number of binding site resi-

dues is far lower than that of non-binding site residues (see

Table 1), which can result in a serious issue of class imbalance, as

the ensemble training can be dominated by the negative samples.

To address this issue, as well as to alleviate the over-fitting prob-

lem from which most ensemble-training methods have suffered,

we implement a modified version of AdaBoost. First, the random

sample selection is performed only on the negative samples (non-

binding residues) while all positive samples are used at each round.

Second, to prevent over-fitting and make full use of the negative

samples, the weight of the misclassified negative samples increase

at a small scale. The overall process of the modified AdaBoost is

outlined in Algorithm 1.

2.3 IonCom
2.3.1 Motivation and method outline

Template-based methods (TBMs) use homologous proteins with

known ligand binding sites to infer the binding residues of the target

sequence (Brylinski and Skolnick, 2008; Roy and Zhang, 2012;

Yang et al., 2013b). The basic assumption behind these methods is

that the evolutionary-related homologous proteins have similar

function and similar binding interactions. TBMs have attracted con-

siderable attention and shown impressive performance in recent

CASP experiments (Schmidt et al., 2011). However the similarity

level between the target and template sequences can affect the

Fig. 2. Relative frequency of 20 amino acids appearing on the binding sites

(dark) and the non-binding (gray) sites of four illustrative ion ligands. Results

for all 13 ions are listed in Supplementary Figure S1. Data are collected from

the BioLiP database

Algorithm 1. Process of the modified AdaBoost algorithm.

Input:

Positive train dataset: SþTrain ¼ xi; yið Þf g; i ¼ 1; 2; . . . ; nþ

Negative train dataset: S�Train ¼ xi; yið Þf g; i ¼ 1; 2; . . . ; n�

Number of iterations

Output:

Boosted classifier: H xð Þ ¼ sign
PT

t¼1 atht xð Þ
� �

Process:

1: Initialize weight distribution on S�Trian: W1 ið Þ ¼ 1=n�;

i ¼ 1; 2; . . . ; n�

2: For t¼1 to T do:

2a: Sampling negative samples S�sample from the negative

train dataset S�Train with weight distribution Wt:

S�sample ¼ sampling S�Train;Wt

� �
2b: Combine positive training and sample datasets:

St ¼ Sþtrain þ S�sample

2c: Train the base classifier: ht ¼ Iat Stð Þ
2d: Calculate the predicted error: et ¼ Pr ht xið Þ 6¼ yið Þ
2e: Calculate the voting weight of the base classifier

ht: at ¼ log10
1�et

et

� �
2f: Update the weight distribution by

Wtþ1 ið Þ ¼Wt ið Þ
Zt
�

logn� n� þ 1� et

et

0
@

1
A; if ht xið Þ 6¼ yi

1; if ht xið Þ ¼ yi

8>>><
>>>:

where Zt is used to ensure that Wtþ1 is a distribution

3: End for

Recognizing metal and acid radical ion-binding sites 3263
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accuracy of the TBMs. Especially, there are no close homologous

templates for the ‘hard’ proteins and TBMs will fail for these kinds

of proteins lacking homologous templates. In contrast, the

sequence-based (or template-free) methods are more robust in the-

ory because they only use sequence information, although the per-

formance of the template-free methods is less accurate than the

TBMs when homologous templates can be identified.

Based on these observations, we propose a composite method,

named IonCom, which combines BMs recently developed, including

COFACTOR (Roy et al., 2012), TM-SITE, S-SITE and

COACH (Yang et al., 2013b). A flowchart of IonCom is depicted in

Figure 1B.

2.3.2 Template-based component predictors

COFACTOR is a structure-based method that uses global structural

alignment, TM-align (Zhang and Skolnick, 2005), to identify prob-

able binding templates and then adopts local 3D motif matches to

derive the binding-site residues. TM-SITE identifies the binding tem-

plates based on the match of substructures that runs from the first

binding residue to the last binding residue (called SSFL) between the

query and template proteins. S-SITE uses the binding site-specific

profile-profile comparisons to detect the templates and ligand bind-

ing sites. Finally, COACH is a consensus-based method that com-

bines the output of the three TBMs. Since both COFACTOR and

TM-SITE use 3D structure of the target proteins, the I-TASSER

method (Yang et al., 2015) is used to generate structure models for

the predictors. To give an unbiased comparison with the sequence-

based methods, all the templates that have a sequence identity

higher than 30% to the query or detectable by PSI-BLAST with an

E-value < 0.05 are excluded from the I-TASSER structure template

library. Meanwhile, the same cutoff is applied to exclude the bind-

ing templates from the BioLiP library when implementing the TBMs

for binding site transferal, to eliminate contamination from homolo-

gous functional templates.

2.3.3 Feature collection and ligand-specific training

The combination of the binding site predictions from IonSeq,

COFACTOR, TM-SITE, S-SITE and COACH is conducted by the

same SVM program with the modified AdaBoost implementation as

described in the last section (Fig. 1B). The training features contain

the probability output from IonSeq and the confidence scores ex-

tracted from the four template-based predictors. The template-based

confidence scores combined the C-score of I-TASSER structure pre-

dictions, sequence and structure similarities of the functional tem-

plates to the query proteins, binding pocket similarity, and the

cluster density of the binding sites on the surface of the I-TASSER

models (Yang et al., 2013b). For each residue, a local window of

width L is used to extract the combined feature vectors.

The IonCom prediction is trained in a ligand-specific manner.

For IonSeq, the binding-site prediction has been trained specifically

on different ligand families. For the general-purpose template-based

predictors, the binding sites and the ligand identities are first ex-

tracted from the homologous templates. If one of the ligands

matches with the specific ligand, the binding site is selected as a can-

didate. Such approach works better than the treatment that only

uses the most possible ligand (data not shown). The IonCom is then

trained on different ligands separately.

In Supplementary Table S3, we summarize the optimized value

of all training parameters that have been used in both IonSeq and

IonCom developments.

2.4 Evaluation metrics
Four metrics are used to evaluate the proposed methods, including

accuracy, sensitivity, specificity, and Matthew correlation coeffi-

cient (MCC), which are defined as:

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
(7)

Sensitivity ¼ TP

TPþ FN
(8)

Specificity ¼ TN

TNþ FP
(9)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

p (10)

where TP is the number of binding residues correctly predicted as

binding residues, TN is the number of non-binding residues cor-

rectly predicted as non-binding residues, FP is the number of non-

binding residues incorrectly predicted as binding residues, and FN is

the number of binding residues incorrectly predicted as non-binding

residues.

3 Results and discussions

3.1 Results of sequence-based method
The proposed sequence-based method (IonSeq) is evaluated by a

5-fold cross-validation experiment. For each ion ligand, the dataset

is randomly divided into five parts, where four parts are used to

train the IonSeq model and the remaining part for testing the model.

This process is repeated five times and the average performance on

testing over the five parts is reported as the final cross-validation re-

sults. Since the S-SITE method does not use 3D structure informa-

tion (Yang et al., 2013b), we will control the IonSeq predictions

with the S-SITE results that are based on the same set of testing pro-

teins (Table 2).

As shown in Table 2, the optimal window size for different ion

ligands is different for IonSeq. The size of the binding pocket is gen-

erally proportional to the volume of the binding ligand, so the local

neighbor information used to predict the binding residues might also

be changed with the size of the binding ligand. IonSeq can make ac-

curate prediction for most of the ligands with a high accuracy and

specificity. Despite this, the sensitivity of IonSeq is lower than S-

SITE in 8 of the 13 cases, in which we found that good templates

were identified by S-SITE for most of the cases. Nevertheless, the

MCC values of IonSeq, which measure the combination of sensitiv-

ities and specificities of the predictions, are higher than S-SITE for

almost all metal and acid radical ions except for the Mg2þ ligand.

The difference is statistically significant for all ions that have a p-

value of Student’s t-test below 5 � 10�7.

Despite the success, the overall MCC values by IonSeq are still

low for the ions of Ca2þ, Mg2þ, Naþ, Kþ, CO32�, and SO42�, due

to the relatively low coverage of the prediction. Statistically, the low

coverage should stem from the relatively lower binding frequency of

these ions in the native structure compared with other ions (Yu

et al., 2013). This data also highlight the limit of the sequence-based

training methods, the performance of which depends on the charac-

teristics of the training data samples.

There are overall four types of features that have been used by

IonSeq: PSSM, local structure properties, position and segment spe-

cific conservation scores, and ligand-specific binding propensity. To

examine and assess the relative contribution of different features, we
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retrained the IonSeq program on each of the individual feature

types. Meanwhile, we also trained IonSeq with the cumulative fea-

tures, in which individual features are gradually added to the feature

that has the highest MCC. The results are summarized in

Supplementary Figure S2. It is shown that among the different indi-

vidual feature types, the conservation score achieves the highest

MCC for all ligands while the local structure property has the lowest

MCC. The order of the performance by the PSSM and propensity

feature varies for different ligands. When the features are added to

IonSeq one by one, the MCC by IonSeq keeps increasing, although

the increase speed differs for different ligands. This data suggest that

different features contain components complementary to each other

and a full feature set is needed to train the predictors to achieve the

optimal prediction results.

3.2 Overall results of composite predictions
To get more reliable binding site predictions, IonCom was designed

to combine the output of the template-free method and TBMs

(Fig. 1B). Among the TBMs, COACH is a consensus approach

shown to outperform all the individual TBMs in the former large-

scale benchmark tests (Yang et al., 2013b). COACH also signifi-

cantly outperforms the peer methods in the community-wide

CAMEO (Continuous Automated Model EvaluatiOn) experiment

(Haas et al., 2013) (see http://www.cameo3d.org/lb/1-year/). Thus,

we will mainly use COACH as a control to examine the IonCom

results.

The average results of the IonCom and COACH are summarized

in Table 3, whereas a detailed list of predictions on the 13 metal and

radical ions is given in Supplementary Table S4. The data show that

IonCom outperforms COACH on all the ion ligands with an average

MCC value increased by 5.84%.

In Figure 3, we present a head-to-head comparison of IonCom

with all the individual methods of template-based and sequence-

based methods. To assess the dependence of IonCom and the indi-

vidual methods, a Pearson correlation coefficient (PCC) between

them is provided in the figure as well. The maximum correlation

(PCC¼0.93) is observed between IonCom and COACH, indicating

that COACH gives the largest contribution to IonCom, followed by

TM-Site, S-Site, IonSeq and COFACTOR. Despite the high correl-

ation with COACH, there are 802 cases in which IonCom has a

higher MCC value than COACH where COACH has a higher MCC

in 301 cases. Accordingly, IonCom has 815/765/963/936 cases with

a higher MCC over COFACTOR/TM-SITE/S-SITE/IonSeq, respect-

ively, while in 389/350/322/597 cases IonCom is outperformed by

the corresponding methods. This data demonstrates the benefit of

the combination of multiple methods.

Table 4 lists the p-values in the Student’s t-test between the

methods on the ion-binding site predictions. The data show that the

P-values between IonCom and the individual methods are all below

10�10, indicating the improvement is statistically significant.

Figure 4 present two illustrative examples showing the recogni-

tion of metal and acid radical ion-binding sites by IonCom. The first

is from the DNA polymerase beta protein (PDB ID: 3B0X) interact-

ing with two Zn2þ ions. The number of the native binding residues

defined by BioLiP is six, where IonCom correctly recognized five of

them (red color in Fig. 4A). The two false positive residues are very

close to the ligands, which may have weak binding to the ligands

(magenta color in Fig. 4A).

The second example is from the tryptophan synthase alpha pro-

tein (PDB ID: 1XC4) that interacts with acid radical SO42-. Among

the five native binding residues defined by BioLiP, IonCom correctly

Table 3. Performance of IonCom in control with COACH for ion-

binding site prediction through 5-fold cross-validation

Ligand Method Acc(%) Sen(%) Spe(%) MCC

Zn2þ IonCom 99.48 48.86 99.86 0.5896

COACH 98.65 57.38 99.14 0.4952

Cu2þ IonCom 99.26 53.08 99.90 0.6799

COACH 98.86 61.12 99.39 0.5901

Fe2þ IonCom 98.73 59.64 99.32 0.5762

COACH 97.95 66.82 98.42 0.5009

Fe3þ IonCom 99.32 59.77 99.83 0.6959

COACH 99.20 62.41 99.67 0.6607

Ca2þ IonCom 98.87 17.72 99.80 0.2963

COACH 96.53 31.59 97.47 0.2048

Mg2þ IonCom 99.47 25.32 99.86 0.3425

COACH 97.96 44.52 98.40 0.2817

Mn2þ IonCom 98.95 48.65 99.55 0.5193

COACH 98.54 54.44 99.07 0.4656

Naþ IonCom 92.03 43.27 92.90 0.1777

COACH 96.91 14.52 98.38 0.1259

Kþ IonCom 94.37 20.93 96.49 0.1460

COACH 93.95 12.69 96.27 0.0752

CO32- IonCom 98.47 12.81 99.67 0.2068

COACH 98.39 8.86 99.63 0.1420

NO2- IonCom 98.92 17.00 99.93 0.3534

COACH 98.86 21.43 99.79 0.3395

SO42- IonCom 97.73 15.15 99.49 0.2338

COACH 97.21 19.15 98.87 0.2114

PO43- IonCom 98.00 31.75 99.28 0.3728

COACH 97.52 35.33 98.72 0.3381

Table 2. Comparison of the sequence-based approaches by IonSeq

and S-SITE using 5-fold cross-validation.

Ligand La Method Acc (%)b Sen (%)b Spe (%)b MCCb

Zn2þ 13 IonSeq 99.21 43.56 99.75 0.5043

S-SITE 97.71 56.43 98.20 0.3794

Cu2þ 15 IonSeq 99.01 50.65 99.69 0.5868

S-SITE 97.98 60.37 98.50 0.4564

Fe2þ 9 IonSeq 98.84 54.08 99.51 0.5772

S-SITE 96.93 59.55 97.49 0.3835

Fe3þ 11 IonSeq 99.21 52.27 99.81 0.6370

S-SITE 98.28 42.14 99.00 0.3760

Ca2þ 9 IonSeq 98.18 22.72 99.04 0.2111

S-SITE 96.62 30.28 97.59 0.2010

Mg2þ 15 IonSeq 99.49 5.57 99.98 0.1825

S-SITE 96.88 42.41 97.33 0.2117

Mn2þ 11 IonSeq 99.01 31.07 99.82 0.4553

S-SITE 98.01 47.36 98.62 0.3619

Naþ 13 IonSeq 74.09 77.14 74.04 0.1516

S-SITE 97.91 7.98 99.52 0.1260

Kþ 11 IonSeq 97.32 8.52 99.88 0.2283

S-SITE 96.72 3.92 99.37 0.0639

CO32- 13 IonSeq 98.58 10.62 99.82 0.2127

S-SITE 98.24 6.01 99.52 0.0866

NO2- 11 IonSeq 98.79 18.00 99.78 0.2847

S-SITE 98.50 4.08 99.63 0.0628

SO42- 11 IonSeq 97.53 13.65 99.32 0.1906

S-SITE 96.98 14.40 98.73 0.1525

PO43- 11 IonSeq 97.95 24.15 99.38 0.3121

S-SITE 97.29 27.86 98.63 0.2667

aL, The optimal window width.
bAcc, accuracy; Sen, sensitivity; Spe, specificity; MCC, Matthew correl-

ation coefficient.
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identify four. There is one falsely predicted residue that is located

quite far away from the ligand; but this reside is still on the surface

of the protein (Fig. 4B). None of these binding sites were recognized

by the COACH prediction (data not shown).

3.3 Sequence-based method is a complement of

structure-based method
The improvement made by IonCom on COACH mainly benefits

from the introduction of the template-free ab initio component,

IonSeq, which is complementary to the template-based features used

in COACH. The effect of the sequence-based features on the binding

site prediction can be most clearly seen on the protein targets that

have no close homologous templates.

In Supplementary Table S5, we summarize the results for the pro-

teins that the threading program LOMETS considers as hard targets,

i.e. the Z-score of the threading alignments between the target se-

quence and the structure templates in the PDB is below the confidence

score cutoffs (Wu and Zhang, 2007). As expected, the performance of

binding predictions becomes poorer for most of these hard proteins.

Among the non-combination based method, the sequence-based

methods (IonSeq and S-SITE) significantly outperform the structure-

based methods (COFACTOR and TM-SITE). In most cases, the

structure-based methods cannot identify any binding sites. In com-

parison, IonSeq provides good complementarity for Zn2þ, Naþand

PO43- ions and S-SITE provides good complementarity for Cu2þand

Mn2þ ions. These results demonstrate that the sequence-based

approaches can serve as an effective complement to the structure-

based methods when no homologous templates are available.

IonCom also significantly outperforms IonSeq due to the com-

plementarity of template-based features to the sequence-based fea-

tures. In particular, the MCC value is significantly improved on the

ligands, Ca2þ, Mg2þand SO42-, which IonSeq considered as hard

targets according to the data in Table 2, with the average MCC

increased by 49%. However, the MCC improvement on Naþ,

Kþand CO32� is modest by IonCom compared with (or even worse

than) IonSeq, indicating that the structure- and TBMs are less effi-

cient for these ions, probably due to the high variation of Naþ,

Kþand CO32� binding even among the homologous proteins

(Yamashita et al., 1990).

3.4 Ligand-specific feature selections help improve

prediction performance
IonSeq is a ligand-specific method that trains models for different

ligands, while the COFACTOR and COACH programs are general-

purpose methods that use one model for different ligands. To get an

unbiased examination on the efficiency of these two types of

approaches, we randomly selected 20% of proteins for each ion lig-

and, which are merged into one single dataset. We then re-trained

the IonSeq model on this single dataset using the same features, but

one with a ligand-specific approach (labeled as ‘IonSeq_specific’)

and the other with a general-purpose approach (‘IonSeq_general’) in

which the positive samples are defined as the binding residues re-

gardless of the ion type that the residues bind to, and the negative

samples are the non-binding residues.

Supplementary Table S6 summarizes the data of IonSeq_specific

and IonSeq_general based on the 5-fold cross validations. It is

observed that IonSeq_specific outperforms IonSeq_general for most

ion ligands, with the average MCC value increased by 20%. Here,

the reason for us to have reduced the sample size (to 20%) is that

the total number of protein samples from the 13 ions is too big for

the general-purpose training. Despite the sample size reduction, the

overall performance of IonSeq_Specific is not changed much in com-

parison with the full-version IonSeq results (see Table 2). This shows

the robustness of the IonSeq data training and cross validation that

are not sensitive to the sample size.

Interestingly, the ligand-specific mode does not outperform the

general-purpose mode on ligand Mg2þ, K�, CO32� and NO2�. One

possible reason may be that the receptor proteins may bind with

multiple ligands except for the target ions; therefore, the ligand-

Table 4. P-values in student’s t-test for the difference in MCC score

between different predictors on the 2100 testing proteins

IonCom IonSeq COACH COFACTOR TM-SITE

IonSeq 2*10�34 —

COACH 7*10�13 7*10�19 —

COFACTOR 3*10�100 5*10�19 2*10�73 —

TM-SITE 5*10�69 0.05 2*10�42 10�13 —

S-SITE 4*10�93 5*10�7 2*10�68 10�6 8�4

Fig. 4. Illustrative examples of binding residues prediction on the protein

(A) 3B0XA with ligand Zn2þand (B) 1XC4B with ligand SO42-. Native, pre-

dicted and the common binding residues are shown in blue, magenta and red

ball-sticks, respectively. The protein structure is shown in green cartoons and

the ion ligands are in gray spheres

Fig. 3. Correlation of ion binding predictions by IonCom versus individual

template- and sequence-based predictors
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specific training can reduce the accuracy due to the alternative bind-

ing sites. To examine the possibility, we count for the ratio of the

number of the target binding sites divided by the number of all bind-

ing sites on the receptor proteins. The binding site ratio for the pro-

teins associated with these four ion ligands are all lower than 0.58,

which means that these proteins have more than 42% alternative

binding sites interacting with other ligands (the binding site ratio for

other ions is generally lower than these four ions). Such variations

on non-specific binding can give some level of favor to the general-

purpose training methods.

3.5 Comparison with other ligand-specific methods
The above controls are mainly focused on the comparison of the

proposed methods with the template-based modeling methods

developed in our own lab. To have a more general control with

other methods, we examine our methods with TargetS, which is a

ligand-specific method for the binding site prediction recently pro-

posed by Yu et al. (2013). There are five metal ligands in the

TargetS dataset that overlap with this study.

Table 5 presents a comparison of the IonSeq and IonCom results

on the five common ligands with TargetS, where the TargetS predic-

tion was obtained by submitting the protein sequence to the web-

server. The data shows that both IonCom and IonSeq predictions

significantly outperform TargetS on all five metal ions. For example,

the average MCC value by IonSeq is nearly eight times higher than

that by TargetS, the difference of which has a p-value in Student’s

test below 10�1000 in all cases. Although TargetS method can get ac-

ceptable performance on large ligands such as ATP and HEME (Yu

et al., 2013), the accuracy of the binding site predictions on the

small ion ligand is generally low. One reason is that the TargetS

training used a high threshold for ligand binding and spatial cluster-

ing, which eliminated many of positive binding residues and thus

decreased the sensitivity of the predictions.

There are other sequence-based methods that were designed for

generic ligand binding site predictions based on dynamic ensemble

learning, such as LigandRFs (Chen et al., 2014) and LigandDSES

(Chen et al., 2016). In addition to the different feature selection and

training processes, one of the major distinctions of IonSeq, in com-

parison to these generic binding modeling methods, is that IonSeq

focuses on a set of small metal and radical ion ligands, which allows

a ligand-specific training to enhance the specificity and accuracy of

training models.

3.6 Impact of database selection to ion-binding site

prediction
Appropriate definition of ligand binding sites is critical to binding site

prediction methods. Many ligand-binding predictors use protein-

ligand complex structures from the PDB to train and test the models.

However, not all the ligands present in the PDB are biologically rele-

vant (i.e. required due to biological functions), as many small mol-

ecules are used as additives for solving protein structures. In this

study, we employ the dataset from BioLiP (Yang et al., 2013a) to train

the IonSeq and IonCom programs. BioLiP is a newly developed

ligand-protein interaction database that uses a semi-manual process

to filter out biologically irrelevant ligands when merging the complex

data from the PDB and other ligand-binding libraries. The binding

site definition in BioLiP is the same as that used in the CASP experi-

ment (Schmidt et al., 2011), i.e. a binding site is defined if the residue

in the target structure has at least one heavy atom within a distance

dij � ri þ rj þ c to the biologically relevant ligand atoms, where ri

and rj are the Van der Waals radii of the involved atoms, and c¼0.5

Å is the tolerance distance parameter.

Many studies also use the Ligand Protein Contact (LPC) pro-

gram (Sobolev et al., 1999) to define the binding residues, which is

based on automated surface complementarity analyses. To examine

the difference between LPC and BioLiP, we collected the binding

sites of each protein in the ligand-specific dataset by the LPC pro-

gram and the BioLiP database, respectively. The number of binding

residues collected from the two datasets is listed in Supplementary

Table S7, which shows that the difference between LPC and BioLiP

is significant. For example, Zn2þhas 632 common binding residues

defined by both, where 65 binding residues are solely defined by

BioLiP and 449 are solely by LPC. The number of binding residues

defined by LPC is much higher than that by BioLiP for most ligands

(expect for Mg2þ, Naþand Kþ that have a slightly higher number of

binding residues by BioLiP). This difference is because BioLiP

focuses on the biologically relevant binding residues that are mainly

collected from the experimental data followed by manual validation.

This process may help filter out false binding residues from auto-

mated geometrical and solvation calculations.

To quantitatively access the impact of the binding site definition

on the performance of binding site predictions, a base-line method

(SVM-PSSM), which uses a PSSM as the only input to train SVM

models, is implemented on the same set of proteins with the ion-

binding sites defined by BioLiP and LPC respectively. As shown in

Table 6, the SVM-PSSM method with the binding sites by BioLiP

achieves considerably better performance than that by LPC, with

the average MCC on the five randomly selected ions improved by

11.8%, which corresponds to the P-value < 10�32 in the Student’s

Table 5. Comparison of the proposed methods with TargetS on the

binding site prediction for the five metal ions

Ligand Model Type Acc (%) Sen (%) Spe (%) MCC

Fe2þ IonCom 98.73 59.64 99.32 0.5762

IonSeq 98.84 54.08 99.51 0.5772

TargetS 96.61 5.76 98.26 0.0398

Zn2þ IonCom 99.48 48.86 99.86 0.5896

IonSeq 99.21 43.56 99.75 0.5043

TargetS 97.90 1.30 99.07 0.0041

Ca2þ IonCom 98.87 17.72 99.80 0.2963

IonSeq 98.18 22.72 99.04 0.2111

TargetS 98.50 5.88 99.56 0.0815

Mg2þ IonCom 99.47 25.32 99.86 0.3425

IonSeq 99.49 5.57 99.98 0.1825

TargetS 99.26 4.35 99.74 0.0555

Mn2þ IonCom 98.95 48.65 99.55 0.5193

IonSeq 99.01 31.07 99.82 0.4553

TargetS 97.92 6.86 99.01 0.0620

Table 6. Performance of SVM-PSSM using data by LPC and BioLiP

Ligand Definationa Acc (%) Sen (%) Spe (%) MCC

Cu2þ LPC 98.23 38.69 99.42 0.4616

BioLiP 99.05 48.22 99.76 0.5914

Fe3þ LPC 97.68 28.42 99.23 0.3474

BioLiP 98.76 70.91 99.12 0.5960

Mn2þ LPC 98.14 19.32 99.71 0.3232

BioLiP 99.03 27.47 99.89 0.4511

SO42- LPC 72.02 64.43 72.34 0.1612

BioLiP 97.81 8.56 99.71 0.1748

PO43- LPC 96.85 13.70 99.51 0.2416

BioLiP 98.20 17.74 99.76 0.3152

aThe definition of binding sites by LPC and BioLiP, respectively.
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t-test. Since the training feature and methods on the two predictions

are identical, such a difference indicates that the binding sites

defined in LPC are less consistent; therefore, the training on the

same datasets resulted in lower prediction accuracy. This may be

due to the fact that LPC uses an automated procedure to define

binding sites that might have induced artificial and biologically non-

relevant ion binding data.

4 Conclusion

We presented two ligand-specific methods for small ligand binding

site predictions from metal and acid radical ions. The sequence-

based ab initio method (IonSeq) uses only sequence information and

adopts a modified AdaBoost method that was extended to eliminate

the imbalance effect of the data sample that has been dominated by

the non-binding residues. The second method, IonCom, combines

the ab initio and template-based methods to generate composite ion-

binding site predictions.

The two methods were tested on a non-redundant set of the ion

binding proteins extracted from a semi-manually curated ligand-

binding sites database, BioLiP (Yang et al., 2013a). The experimen-

tal results demonstrated the significant improvement of the compos-

ite methods over individual component predictors. The detailed data

analysis shows that the major contributions for the improvement are

due to the complementarity of the component predictors from dif-

ferent prediction principles. Meanwhile, the ligand-specific feature

selection and the AdaBoost training helped improve accuracy of the

sequence-based predictors that are critical for modeling the targets

that lack close homologous templates. Although the generic pre-

dictors with ligand-nonspecific features have on average a lower

MCC, training with the generic feature sections can improve the

binding-site accuracy of some proteins that bind with multiple ion

ligands. Finally, it is found that the training library selection, with a

manually-cleaned and biologically-relevant binding dataset, has fur-

ther impact to enhance the binding site prediction, compared with

the automated, geometry based binding datasets.

Despite the encouraging data results compared with peer meth-

ods, the overall accuracy of the current methods is still low for some

ions with a high binding variability, such as Naþand Kþ. There are

also problems for the approaches to identify specific binding loca-

tions when multiple ligands are associated with the same target pro-

teins. Future directions of developments will be to explore more

specific feature selections, e.g. integrating physicochemical features

of the small ion ligands (Yamashita et al., 1990) to increase the spe-

cificity of the binding recognitions. Meanwhile, appropriate selec-

tion and refinement of the negative sample (i.e. non-binding

residues) should also help to increase the binding specificity and re-

duce the noise from non-specific ligand binding.
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