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ABSTRACT

Motivation: Identification of protein–ligand binding sites is critical to

protein function annotation and drug discovery. However, there is no

method that could generate optimal binding site prediction for different

protein types. Combination of complementary predictions is probably

the most reliable solution to the problem.

Results: We develop two new methods, one based on binding-spe-

cific substructure comparison (TM-SITE) and another on sequence

profile alignment (S-SITE), for complementary binding site predictions.

The methods are tested on a set of 500 non-redundant proteins har-

boring 814 natural, drug-like and metal ion molecules. Starting from

low-resolution protein structure predictions, the methods successfully

recognize 451% of binding residues with average Matthews correl-

ation coefficient (MCC) significantly higher (with P-value 510–9 in

student t-test) than other state-of-the-art methods, including

COFACTOR, FINDSITE and ConCavity. When combining TM-SITE

and S-SITE with other structure-based programs, a consensus ap-

proach (COACH) can increase MCC by 15% over the best individual

predictions. COACH was examined in the recent community-wide

COMEO experiment and consistently ranked as the best method in

last 22 individual datasets with the Area Under the Curve score 22.5%

higher than the second best method. These data demonstrate a new

robust approach to protein–ligand binding site recognition, which is

ready for genome-wide structure-based function annotations.

Availability: http://zhanglab.ccmb.med.umich.edu/COACH/

Contact: zhng@umich.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Proteins perform the biological functions through interactions

with othermolecules (called ligands). The identification of specific

ligand-binding site (LBS) on proteins is often the first important

step toward understanding the function of protein molecules,

or for rational design of new therapeutic compounds to modu-

late the protein functions (Greer et al., 1994; Hubbard, 2006).

Due to the technical difficulties and high cost associated with

experimental determination, however, the structural details for

protein–ligand interactions are unknown for most proteins.

Even for the proteins with experimentally solved 3D structure,

there are nearly 40% of proteins (i.e. 35 633 out of 90 424) in

the PDB which lack biologically relevant ligand-binding informa-

tion, as shown in BioLiP (Yang et al., 2013). Accurate prediction

of ligand–protein binding is therefore required for both biological

and therapeutic studies.
A variety of methods have been developed for computational

prediction of protein LBSs; these methods can be generally cate-

gorized into two groups, i.e. sequence-based (Capra and Singh,

2007; Fischer et al., 2008; Lopez et al., 2011;Rausell et al., 2010) or

3D structure-based (An et al., 2005; Brylinski and Skolnick, 2008;

Capra et al., 2009; Hendlich et al., 1997; Laskowski, 1995; Roche

et al., 2011; Roy et al., 2012; Roy and Zhang, 2012; Wass et al.,

2010) methods. Most of the sequence-based methods rely on the

residue conservation analyses under the assumption that the

ligand-binding residues are functionally important and therefore

conserved in evolutionary process (Capra and Singh, 2007). This

approach has the advantage of generating prediction from se-

quence alone but the precision of predictions is low (typically

around 35% at 20% recall) because many non-binding residues

can also be of high degree of conservation due to the diverse roles

(e.g. to keep the fold stable).
For the structure-based methods, two different approaches

prevail. In the first approach, the ligand-binding pocket is iden-

tified by recognizing the surface cavities on the 3D structural

model of the target protein (An et al., 2005; Capra et al., 2009;

Hendlich et al., 1997; Laskowski, 1995). It has the advantages of

ab initio modeling of the LBSs as predictions are made without

using templates, but the false positive rate can be high, especially

for the low-resolution models generated from protein structure

predictions. The second structure-based approach is to infer

ligand-binding information from the known template proteins,

which have similar global and/or local structure to the query

(Brylinski and Skolnick, 2008; Roche et al., 2011; Roy et al.,

2012; Roy and Zhang, 2012; Wass et al., 2010). As shown in

the recent community-wide CASP experiments (Schmidt et al.,

2011), this type of template-based approaches represent by far

the most accurate methods, especially for targets which have

close homologs in the ligand–protein complex structure data-

bases. Nevertheless, no individual methods can generate suffi-

ciently accurate predictions for different targets. For instance,

the template-based methods do not outperform ab initio pocket

identification methods for distant-homologous targets; and the*To whom correspondence should be addressed.

2588 � The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

 at U
niversity of M

ichigan on O
ctober 30, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

ichigan on O
ctober 30, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

ichigan on O
ctober 30, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

ichigan on O
ctober 30, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

ichigan on O
ctober 30, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

ichigan on O
ctober 30, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

ichigan on O
ctober 30, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

 at U
niversity of M

ichigan on O
ctober 30, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

s
-
,
,
-
-
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


performance of pocket-based methods can be significantly
degraded in the targets without high-resolution models, where

sequence-based methods may have their advantage.
In this work, we aim to develop a reliable approach which

could generate highly accurate ligand-binding predictions for dif-

ferent categories of protein targets. We first design a new struc-

ture-based algorithm (TM-SITE) which derives LBSs from
structure-related templates with the alignments built on bind-

ing-specific substructures matches. Second, a new binding-spe-

cific sequence profile alignment method (S-SITE) is developed

for evolution-based LBS recognition. Finally, we design
COACH to combine the prediction results of TM-SITE and S-

SITE with other available LBS tools by the support vector ma-

chine (SVM) training. Because one of the major objectives in this

work is for genome-wide function annotation following the se-
quence-to-structure-to-function paradigm, we will examine and

test our methods on low-resolution structure models generated

by the state-of-the-art protein structure predictions (Roy et al.,

2010; Zhang, 2007; Zhang, 2008). All the algorithms and data

developed in this work are freely accessible at our website.

2 MATERIALS AND METHODS

2.1 Datasets

Our benchmark testing dataset consists of 500 non-redundant proteins

that harbor 814 ligands (410 natural ligand, 238 drug-like ligand and 164

metal ions). This set of proteins are taken from the previous benchmark

study (Roy et al., 2012; Roy and Zhang, 2012), but one protein (PDB ID:

3cq3) was removed because its ligand (GOL) is not biologically relevant

as evaluated in BioLiP (Yang et al., 2013). Ligands in this benchmark are

more comprehensive, including metal ions and other ligands from the

BioLiP database. In addition, a set of 400 non-redundant proteins with

at least 5 residues bound to known ligands are collected from BioLiP as

the training set to train our methods. None of proteins in the training set

has a sequence identity430% to the proteins in the test set.

For each protein, the structural models are generated by the standard

I-TASSER pipeline (Roy et al., 2010) where all homologous templates

with a sequence identity430% to the query sequence are excluded from

the template library. This sequence identity cutoff is also used to filter

out all ligand-binding templates when generating the LBS predictions.

The two datasets of proteins, together with the binding-ligands and the

I-TASSER models can be downloaded at http://zhanglab.ccmb.med.

umich.edu/COACH/benchmark.

2.2 TM-SITE

TM-SITE is designed to derive the LBSs by structurally comparing the

query with the proteins of known LBSs (called template). There are gen-

erally two types of structural comparisons. The global comparison aligns

the entire structure of two proteins which is most robust to recognize the

similarity of two folds; but the alignment on the ligand-binding regions,

which is important for LBS predictions, can be distracted by the struc-

tural variations in the regions far away from the binding pockets. On the

other hand, the local comparison based on the binding residue structures

is more sensitive to detect the similarity of specific binding pockets; but it

has a high false positive rate due to the too small number of residues

involved in the comparisons. TM-SITE takes an intermediate approach

balancing the two comparisons, i.e. to compare the structures of a sub-

sequence from the first binding residue to the last binding residue (called

SSFL) on the query and template proteins. A flowchart of TM-SITE is

depicted in Figure 1A, which consists of three steps of SSFL generation,

binding template identification and LBS selection.

2.2.1 SSFL generation For templates, an SSFL library is pre-calcu-

lated for all proteins in the BioLiP database by collecting the residues

associated with the known ligands. For the query, various surface cavities

are first identified by ConCavity (Capra et al., 2009) which detects the

cavities based on the shape of the structural surface. For each identified

cavity, residues that have any heavy atoms within 2.5 Å to the cavity’s

mesh points are considered as putative binding residues. The cavities with

415 putative binding residues are defined as putative binding pockets

which are then used to determine the SSFL of the query. If there is no

cavity with415 binding residues, the largest cavity is used for the query

SSFL definition.

2.2.2 Binding template identification For a given query protein, we

use TM-align (Zhang and Skolnick, 2005) to thread the query SSFL

structure through the SSFL library by optimal structural alignments.

The match between each pair of query and template SSFL structures is

evaluated by a composite scoring function which counts for both global

and local, structural and sequence similarities, i.e.

qstr ¼
2

1þ e� Lc 0:4Lgþ0:3Lsþ0:2JSDð ÞþTM½ �
2 � 1, ð1Þ

whereLc is the fraction of template binding residues that are aligned to the

query structure by TM-align. Lg ¼
1
n

Pn
i¼1

1

1þ di

�
d0

� �2 accounts for the local

structure similarity between the binding pockets of query and template

proteins, where n is the number of the aligned residue pairs associated with

the binding pockets of the template and di is the distance of i-th residue

pair. Ls ¼
1
n

Pn
i¼1

BðR
q
i ,R

t
i Þ measures the evolutionary relation between the

aligned binding residue pairs where BðR
q
i ,R

t
i Þ is the normalized

BLOSUM62 score for the i-th aligned residue pair. JSD is an evolutionary

conservation index defined as the average Jensen–Shannon divergence

score over the predicted binding residues, which is calculated frommultiple

sequence alignments (see Supplementary Materials for detail). Here, JSD

should not be considered redundant to Ls, since Ls is defined for the pair-

wise conservation between the query and the structure template from

BioLiP, but JSD is for the conservation between query and all other hom-

ologous sequences detected from sequence database by PSI-BLAST

(Altschul et al., 1997). Finally, TM ¼ 2
TMt�TMq

TMtþTMq
is the harmonic average

of the two TM-scores returned by TM-align when aligning the query and

template SSFLs, where TMt and TMq are TM-scores normalized by query

and template lengths, respectively. The format of Equation (1) and the

weighting parameters have been determined by extensive trial and error on

the 400 training proteins, which results in the best performance on the

ligand-bind site recognitions according to the average Matthews’s correl-

ation coefficient (MCC) values.

Fig. 1. Flowchart of (A) TM-SITE and (B) S-SITE for protein–ligand

binding site prediction
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All proteins in the template SSFL library with a qstr score40.65 are

collected as putative templates; if no proteins have a qstr40.65, the pro-

tein with the highest qstr will be selected. Meanwhile, a second scan using

the entire query structure as a probe is conducted through the BioLiP

library based on TM-align (Fig. 1A). All proteins, which are missed by

the first SSFL-based scan but hit by the whole-chain based scan, are

added to the putative template pool. Since the whole-structure based

scan has lower specificity, a lower cutoff, qstr40.57, is used in the

second structure scan.

2.2.3 LBS clustering and selection To select the ligand-binding resi-

dues on the query, all ligands bound with the proteins in the putative

template pool are projected to the query structure based on the corres-

ponding alignments from TM-align. These ligands are then clustered

based on the spatial distance between their geometric centers, where an

average linkage clustering algorithm is conducted with a distance cutoff

4 Å. At the beginning, each ligand sample is treated as a cluster. Two

clusters are merged into one when their distance is below the cutoff. For

clusters containing multiple ligands, the cluster distance is computed as

the average over the pair-wise distances of the geometric centers between

all the ligands from the first cluster and all the ligands from the second

cluster. The cluster merging iteration starts from the cluster pairs of the

closest distance, and stops when no cluster pairs have the distance smaller

than the distance cutoff (4 Å).

For each cluster, a set of consensus binding residues, which usually

correspond to one binding pocket, are deduced from all the ligands in the

cluster based on the maximum voting. The residues receiving 425%

votes, i.e. more than a quarter of templates in the cluster have the

same residues as the binding site, are considered as the final predicted

LBS residues in the binding pocket. This clustering procedure and cutoff

selections are similar to the ones used by previous methods, including

3DLigandSite (Wass et al., 2010), COFACTOR (Roy et al., 2012; Roy

and Zhang, 2012), FINDSITE (Brylinski and Skolnick, 2008) and

FunFOLD (Roche et al., 2011). A confidence score of the predicted

binding residues, associated with specific ligand-binding clusters, is

defined by

CSt ¼
2

1þ e�
m
Mq

max
str þ0:2lnð1þ

ffiffiffi
m3
p
Þþ0:2JSDTa½ �

� 1, ð2Þ

where m is the number of template ligands in the cluster and M is the

total number of templates selected. qmax
str is the maximum of qstr score

from the templates in the cluster as calculated by Equation (1). JSDTa is

the average JDS score for the predicted LBS residues from the ligand

cluster. Again, this form of scoring function was decided by trial and

error on our training set proteins. In the final TM-SITE predictions,

the binding pockets are selected and ranked based on the CSt score,

with the binding residues sorted by the number of votes in each binding

pocket. In our training data, a prediction with CSt40.35 has average

false positive and false negative rates below 0.16 and 0.13, respectively.

2.3 S-SITE

S-SITE is another template-based method, which detects protein tem-

plates and the LBSs using binding site specific, sequence profile–profile

comparisons. The procedure of S-SITE is illustrated in Figure 1B, which

consists of three steps of sequence profile generation, template identifica-

tion and LBS selection.

2.3.1 Profile generation To obtain the profile of the query protein,

PSI-BLAST is used to thread the query sequence through the NCBI

sequence database for constructing multiple sequence alignments. A

position-specific frequency matrix (PSFM) is then computed from the

multiple sequence alignments. Similarly, the template profiles, which

are represented by the position-specific scoring matrices (PSSM), are

pre-constructed by the PSI-BLAST searches for all proteins in the

BioLiP library.

2.3.2 Template identification To detect homologous templates from

BioLiP, the query profile PSFM is compared with the template profile

PSSMs in the library using the Needleman–Wunsch dynamic program-

ming algorithm (Needleman and Wunsch, 1970). The score for aligning

the i-th residue in the query to the j-th residue in template is defined as

Si, j ¼
X20
k¼1

F
q
i, kP

t
j, k þ � s

q
i , s

t
j

� �
þ 2btjB R

q
i ,R

t
j

� �
, ð3Þ

where F
q
i, k (or P

t
j, k) is the i,k-th (j,k-th) element in the query PSFM (or the

template PSSM); s
q
i (or stj ) 2 fH,E,Cg is the three-state secondary struc-

ture (‘H’¼ alpha helix, ‘E’¼beta strand and ‘C’¼ random coil) of i-th

(or j-th) residue in the query (or template); the secondary structure for

templates are assigned by STRIDE (Heinig and Frishman, 2004) using

the PDB structures. For query, its secondary structure is predicted by

PSIPRED (Jones, 1999). �(x, y) equals to 1 if x¼ y, or 0 otherwise; btj ¼ 1

if the j-th residue is at the binding site in the template, or btj ¼ 0 otherwise;

BðR
q
i ,R

t
j Þ is the normalized BLOSUM62 similarity score for residues

R
q
i in query and Rt

j in template with value in [0,1] (see Supplementary

Materials). Overall, the first term in Equation (3) accounts for the query-

to-template profile alignments, the second for the secondary structure

match, and the third for evolutionary relation of residues in the LBSs.

The quality of a template match is estimated by

qseq ¼
2

1þ e� 0:5ASþ0:5LcLsþ0:2JSDð Þ
� 1, ð4Þ

where AS ¼
1
L

PLali

i¼1

Si, i is the profile-alignment score normalized by the

query sequence length L following Equation (3). Lc, Ls and JSD are

similar to that defined in Equation (1) but with the alignments generated

from the ligand-binding specific profile–profile comparisons. All proteins

in BioLiP with a qseq score above 0.5 are selected as the putative tem-

plates. If the number of putative templates is below 10, the top 10 tem-

plates with the highest qseq score will be returned for the next step of LBS

selection analysis.

2.3.3 LBS selection by maximum voting The residues on the query,

which are aligned with the binding residues on the templates following the

sequence profile–profile alignments, are assigned as putative binding

residues in the S-SITE prediction. Since the binding sites of different tem-

plateswillmatchwithdifferent query residues, a consensus voting scheme is

applied to select the most consensus binding residues. The residues receiv-

ing425% votes are considered as the final binding residues by S-SITE.

A confidence score CSs is defined for the binding residues:

CSs ¼
2

1þ e� qmax
seq þ0:1lnð1þ

ffiffiffi
N3
p
Þþ0:2JSDSa½ �

� 1, ð5Þ

where qmax
seq is the maximum value of qseq among all the putative tem-

plates, N is the number of the selected templates, JSDSa is the average

Jensen–Shannon divergence score of all the predicted LBS residues. Here,

the confidence score CSs is in a similar format as that of TM-SITE (CSt)

but no clustering is conducted in S-SITE since the templates detected

from the sequence profile comparison are converged in most cases.

Based on the training data, a prediction with CSs40.25 has average

false positive and false negative rates below 0.24 and 0.21, respectively.

2.4 Control programs for LBS prediction

Three methods representing different prediction principles are used as

control in this study. First, ConCavity (Capra et al., 2009) is an ab initio

prediction method which identifies LBSs from the surface cavity of the

target structure with score combining residue conservation information.

FINDSITE (Brylinski and Skolnick, 2008) is a template-based approach

which derives the query binding sites from template proteins identified by

the threading programs (Skolnick et al., 2004). COFACTOR (Roy et al.,

2012; Roy and Zhang, 2012) is a structural comparison approach which

identifies ligand-binding residues by global and local matches of the query
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and template structures. The ConCavity and FINDSITE are publically

available programs and COFACTOR was developed in our lab. All the

methods are run using default parameters.

2.5 COACH

COACH is a consensus approach to LBS prediction that combines the

multiple prediction results of algorithms from TM-SITE, S-SITE,

COFACTOR, FINDSITE and ConCavity, with the architecture pre-

sented in Supplementary Figure S1. To generate a prediction, the query

sequence along with the structure are provided as input and fed into the

individual programs. The top-scoring predictions from each of the pro-

grams are combined using a linear SVM as implemented by the software

SVM-light (Joachims, 2006).

The probability of a residue to be a binding residue is calculated from

individual methods, which are used as the feature vectors for the residue.

For TM-SITE and S-SITE, the probabilities are computed as the con-

fidence score of the ligand cluster or templates (i.e. CSt and CSs) multi-

plied by the ratio of votes on the residue. The probabilities for

FINDSITE and COFACTOR are taken from the default confidence

scores. For ConCavity, the probability is calculated by a linear combin-

ation of the residue conservation score and the distance of the residue to

the predicted binding pockets. Finally, all feature vectors are fed into

SVM to make consensus prediction, with classifiers trained on the 400

non-redundant training proteins, which have sequence identity530% to

the proteins in the test set.

The linear kernel in SVM-light was used with the optimal value of the

cost parameter C selected based on an exhaustive grid search. To avoid

over-training, a 10-fold cross-validation procedure was applied as fol-

lows. The training set was randomly divided into 10 subsets of equal

size, where 9 subsets are used to train the SVM and the remaining

subset was used as validation to calculate the average MCC. For each

parameter C in the grid space, such random sample division was repeated

by 10 times and an overall MCC was calculated as the mean of the 10

average MCCs. The parameter C with the highest overall MCC was

finally selected for SVM training.

2.6 Evaluation

The LBS prediction results are mainly evaluated by the Matthews

correlation coefficient (MCC), precision and recall:

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ
p

precision ¼ TP
TPþFP

recall ¼ TP
TPþFN

8>><
>>:

, ð6Þ

where TP (FP) is the number of true (false) binding residues in the pre-

diction, and TN (FN) is the number of true (false) non-binding residues.

In general, MCC represents a score combining both the accuracy and

coverage of the prediction which has a better balance of both aspects than

the individual precision and recall values. The MCC equation was also

used in the CASP official evaluation for protein–ligand binding site pre-

diction (Schmidt et al., 2011).

Another measure to combine precision and recall is the Area Under the

Curve (AUC)value of the true positive rateversus false positive rateplot, or

the ROC (Receiver Operating Characteristic) plot. This measurement has

been used in another community-wide blind experiment, CAMEO (http://

www.cameo3d.org), for accuracy evaluation. Since MCC and AUC con-

tain similar information, we will mainly use MCC for our benchmark/

training data, and AUC for CAMEO experiment in our data analysis.

3 RESULTS

3.1 Accuracy of the I-TASSER structural models

Because the quality of the receptor models has impact on the

structure-based methods for LBSs prediction, we computed

TM-score and RMSD of the I-TASSER models for the 500
testing proteins. In Supplementary Figure S2, we present the
histogram distribution of the TM-score and RMSD of the first

I-TASSER models. It is shown that the majority of the proteins
(¼90%) can be modeled with a correct fold (TM-score40.5) and
65% have a RMSD below 6 Å, although all close homologous

templates were excluded in the model generations. The average
TM-score and RMSD for the proteins in the test dataset is 0.77

and 6.4 Å, respectively. Nevertheless, there are still 38 cases
which have incorrect folds with a TM-score below 0.5, and 176
cases with RMSD higher than 6 Å. Even in those with a correct

fold, the local structure associated with the LBSs have structural
deviations with an average RMSD¼ 2.8 Å to the native holo-
structures. These represent a set of models in a typical range of

accuracy of the template-based protein structure predictions
(Zhang, 2009).

3.2 Summary of individual methods

The MCCs for TM-SITE and S-SITE are summarized in first
two columns of Table 1. The average MCC score for TM-SITE

is 0.48, with precision 0.57 and recall 0.49, respectively. The
MCC and precision values of TM-SITE are higher than that

of S-SITE (MCC¼ 0.45, precision¼ 0.45 and recall¼ 0.58), al-
though TM-SITE has a slightly lower recall. The difference in the
MCC values is statistically significant which has a P-value510–3

in the Student’s t-test (Supplementary Table S1). This data dem-
onstrate the usefulness of structural information in I-TASSER
models that were taken by TM-SITE for template detection,

while S-SITE is based on the sequence profile comparison. The
higher value of recall in the S-SITE predictions is partly due to
the fact that many S-SITE predictions contain residues from

multiple ligand-binding pockets, since no clustering was per-
formed in S-SITE. The clustering procedure in TM-SITE

increases the specificity and thus MCC of the predictions. In
S-SITE, since the templates are mostly converged, we found
that the clustering on the S-SITE predictions did not increase

the overall MCC score but there was a slight increase in precision
(0.52) and reduction in recall (0.49).
The TM-SITE predictions also outperform the three other

control methods, with the average MCC value 14% higher
than FINDSITE and COFACTOR, and 84.6% higher than
ConCavity. The P-value in the Student’s t-test is below 10–9 in

all the comparisons (Supplementary Table S1). The precision of
TM-SITE and COFACTOR is similar while the recall of TM-

SITE is higher, which is partly due to the fact that the TM-SITE
prediction is made based on a combination of multiple templates,
while COFACTOR prediction is on a single top-scoring

template. ConCavity’s recall (0.51) is slightly higher than TM-
SITE (0.49), while its precision is very low due to over-predic-
tion, resulting in a low MCC value 0.26.

In Supplementary Figure S3, we present a head-to-head com-
parison of TM-SITE versus the four other methods based on
MCC. Out of the 500 test proteins, there are 345, 354, 347 and

400 cases where TM-SITE has equal or higher MCC than
S-SITE, COFACTOR, FINDSITE and ConCavity, respectively.

Interestingly, although S-SITE has a higher average MCC score
than COFACTOR and FINDSITE, it has similar number of
cases in which it outperforms TM-SITE. This indicates that

the S-SITE algorithm is probably less complementary to
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TM-SITE compared to other methods, since several common

terms (including the binding residue coverage and the JSD

score) have been used in both methods for template recognitions.

In addition, the Pearson’s correlation coefficients (PCC) between

TM-SITE and other methods are reported in Supplementary

Figure S3. TM-SITE has the highest PCC with COFACTOR,

probably because both methods use structural alignment and the

same template library. As expected, ConCavity has the lowest

PCC with TM-SITE as it is a template-free method.
In the lower part of Table 1, we also list the MCC results of

the programs when the experimental structure of the receptor

proteins is used. As expected, the performance of all the struc-

ture-based methods is improved due to the increase of structural

accuracy of the receptor proteins. S-SITE has no change since it

only uses the sequence profile information. Nevertheless, it has a

comparable or superior result than other structure-based meth-

ods from FINDSITE, COFACTOR and ConCavity.

3.3 Why TM-SITE/S-SITE work better than

other methods?

The method with the closest overall performance to TM-SITE is

COFACTOR, but TM-SITE still has an MCC value 14% (using

I-TASSER models) and 10.9% (using experimental structure)

higher than COFACTOR on the 500 tested proteins.
A major advantage of the TM-SITE is the use of the SSFL

residues for structural alignments, which helps increase the sensi-

tivity and specificity of the template detections, compared to either

the global or local structural comparison taken by COFACTOR.

Figure 2 shows an illustrative example from the phosphatidylino-

sitol 4,5-bisphosphate 3-kinase protein (PDB ID: 2chzA),

which has the ligand molecule N-(5-(4-Chloro-3-(2-Hydroxy-

Ethylsulfamoyl)-Phenylthiazole-2-Yl)-Acetamide bound with

Residues S567, W573, I592, Y628, I640, E641, I642, V643,

A646, N711, M713, F721, I723 and D724. We first run I-

TASSER which generates the first model with a TM-score¼

0.74 and RMSD¼ 19.8 Å. Based on the I-TASSER model, the

ConCavity program detects 3 putative binding pockets, each

with more than 15 associated binding residues, which result in

an SSFL definition from residue M565 to residue P787

(Fig. 2B). Despite the high RMSD of the global I-TASSER

model, the SSFL region has high accuracy with a RMSDSSFL¼

3.8 Å, which provides an opportunity for the accurate SSFL

structure matches to the structures in BioLiP. Following the
SSFL-based TM-align alignment, seven templates, including

2x6kA, 2x6iA, 2x6jA, 2x6jB, 2x6kB, 3ls8A and 2x6fB, have a
qstr score above 0.65, where 16 binding residues, including

M565, A566, S567, P571, I592, K594, D602, Y628, I640, E641,
I642, V643, D645, M713, I723 and D724, are transferred as puta-

tive LBS residues to the query (Fig. 2E). After the ligand clustering

and the maximum vote, 14 residues receiving425% votes (M565,
A566, I592, K594, D602, Y628, I640, E641, I642, V643, D645,

M713, I723 and D724) are eventually selected, which have a CSt
score¼ 0.57, significantly higher than the default confident CSt
cutoff (0.35). This prediction results an MCC score¼ 0.64 with
precision¼ 0.64 and recall¼ 0.64, respectively.

COFACTOR uses either the local-binding site or the entire
structure comparison. The former comparison does not result in

significant hits since a large number of possible 3D motifs have
been aligned in the query structure which generates similar

scores. The global structure comparison picks up two templates
from 1n38A and 1n35A, which have a completely different bind-

ing pocket although they have a similar fold to the query protein.

These hits result in an LBS prediction with an MCC¼ –0.01 for
COFACTOR, in this example.
Accordingly, ConCavity has selected 76 residues as the bind-

ing residues which also results in a low MCC¼ 0.32, due to the
low precision value (¼0.14) although 11 out of the 14 native LBS

residues are included in the ConCavity prediction. FINDSITE

failed to identify the correct binding residues since most of the
templates have only a weak homology to the query protein and

the threading alignment by FINDSITE selected an incorrect tem-
plate (with a TM-score¼ 0.26).

The second advantage of TM-SITE is the composite scoring
function balancing both structural and sequence similarities in

the SSFL region which is essential for recognizing the correct
templates and binding sites. One of the major differences be-

tween the scoring functions of TM-SITE and FINDSITE is

Fig. 2. An illustrative example of TM-SITE binding site prediction on the

phosphatidylinositol 4,5-bisphosphate 3-kinase protein. (A) I-TASSER

model with TM-score¼ 0.74 and global/local-binding RMSD¼ 19.8/

1.5 Å. (B) Binding pocket identification by ConCavity (green mesh).

(C) Query SSFL definition based on predicted binding pockets for the

query protein (green cartoon) which has a RMSD to the native 3.8 Å. (D)

Template SSFLs recognized by TM-align. (E) Superposition of all tem-

plate SSFLs on the query structure. (F) Final model of the predicted

binding sites: native/predicted ligands are shown in magenta/blue sticks;

true/false positive binding sites are highlighted in green/red ball-sticks

Table 1. LBS predictions by different programs on the 500 test proteins

TM-S S-SI COF FIN Con COA

ITA MCC 0.48 0.45 0.42 0.42 0.26 0.54

Precision 0.57 0.45 0.56 0.44 0.23 0.54

Recall 0.49 0.58 0.39 0.49 0.51 0.63

EXP MCC 0.51 0.45 0.46 0.44 0.33 0.60

Precision 0.59 0.45 0.61 0.45 0.26 0.59

Recall 0.51 0.58 0.41 0.51 0.62 0.70

TM-S, TM-SITE; S-SI, S-SITE; COF, COFACTOR; FIN, FINDSITE; Con,

ConCavity; COA, COACH; ITA, I-TASSER models; EXP, experimental struc-

tures.

Bold values denote the best performance in each category.
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that the evolutionary information and local structure similarity
of binding site are not considered in FINDSITE. These two
terms are calculated by Lg and LS in TM-SITE (Equation 1).
If we turned off these two terms, the performance of TM-SITE

would be significantly degraded with the average MCC value
reduced from 0.48 to 0.43. Similarly, the JSD score was not
considered in score-function of CAFACTOR although it was

used for initial binding residue screening. If we turned off the
JSD term in Equation 1, the MCC value is also reduced.
In the example of Figure 2, although S-SITE takes a similar

threading approach to FINDSITE, by using the profile–profile
alignment for template screening, it recognizes a set of binding
residues, including M565, A566, S567, P571, I592, K594, D602,

Y628, I640, E641, I642, V643, D645, A650, M713, I723 and
D724, which has an MCC score (0.64) much higher than
FINDSITE (0.0). A detailed analysis shows that the binding-
specific conservation scores, including Ls and JSD in

Equations (1) and (4), dominate the profile–profile comparisons
and therefore plays an important role in the query-template
alignment selections. We also tried to replace Equations (1)

and (4) by the global structure similarity TM-score and the
threading Z-score, respectively. The performances of TM-SITE
and S-SITE are dramatically reduced by 21% and 59%, respect-

ively. These data demonstrate the extreme importance of a
balanced scoring function combining different effects from
global and local, structural and evolutionary information of lig-
and–protein binding.

3.4 Combination of different methods by COACH

In the last column of Table 1, we list the prediction results of
COACH, which combines the predictions from the five individ-

ual algorithms using the SVM. The average precision and recall
of the COACH predictions are 0.54 and 0.63, respectively, which
result in an overall MCC¼ 0.54. This MCC value is 12.5%

higher than the best individual prediction from TM-SITE or
107.7% higher than the prediction by ConCavity. The improve-
ments made by COACH are mainly attributed to the comple-

mentary property of the individual component predictors, as
highlighted by the head-to-head comparison between TM-SITE
and other methods shown in Supplementary Figure S3.
Although the best individual prediction by TM-SITE outper-

forms that by other methods for most proteins (see the number
of data points located in the upper triangle), there are still a
considerable number of proteins where TM-SITE performs

worse than others. Thus, a combination of the results provides
the opportunity to pick up the cases that are incorrectly predicted
(mostly having weak scores) by one program but correctly pre-

dicted (mostly having high scores) by others.
Supplementary Figure S4 presents head-to-head comparisons

of COACH versus all individual programs. Indeed, COACH has

dominantly more number of proteins that have a higher MCC
than any of the individual programs. We note that the consensus
approach in COACH is different from most of the meta-server
approaches in the protein structure prediction which are de-

signed to select the models from individual programs (Ginalski
et al., 2003; Wu and Zhang, 2007). Therefore, the final model in
the meta-server predictions for a specific protein should be iden-

tical to that by some individual program. In COACH, however,
the LBS predictions are combined from different programs.

Thus, none of the COACH predictions is identical to that of
the individual programs, which can be seen in Supplementary
Figure S4 whereby there are almost no points on the diagonal

lines of the comparisons. The PCC values between COACH and
other methods are listed in Supplementary Figure S4, which are

approximately associated with the contribution of the compo-
nent methods to COACH. As shown in the figure, TM-SITE

has the highest PCC with COACH, meaning that it contributes
the most to COACH, followed by COFACTOR, S-SITE,

FINDSITE and ConCavity, respectively.
As shown in Supplementary Table S1, the P-values in the

Student’s t-test between COACH and other methods are all

510–14, demonstrating that the improvement from consensus is
statistically significant.

3.5 Test of COACH in blind experiments

CAMEO (Continuous Automated Model EvaluatiOn) is a com-

munity-wide ligand-binding experiment, which was designed to
evaluate computational methods in a continuous base. Every

week, a set of pre-released sequences from the PDB are collected
and sent to the online service systems with the LBS prediction
generated before the experimental structure is released. The pre-

diction results are evaluated based on the subsequently released
PDB structures. The CAMEO experiment is complementary to

the CASP experiment but has the advantage to assess the parti-
cipating methods on a large number of targets and in a continu-

ous base, whereby the CASP experiment has often too few
targets to draw a reliable conclusion on the ligand-binding pre-
diction (Schmidt et al., 2011). Instead of the MCC score, the

AUC score of the ROC plot has been used by CAMEO for
the evaluation of the LBS predictions.

COACH participated in CAMEO since December 7, 2012.
Figure 3 summarizes the official assessment results of the LBS

predictions by COACH in the last 22 weeks, together with other
7 predictors, which contains results on 1203 released proteins.
The detailed AUC values are listed in Supplementary Table S2,

taken from the official CAMEO website http://www.cameo3d.
org/ligand_binding/weekly_summary.html. Because the number

of targets modeled by different predictors can be different
(Supplementary Table S2), we use the ‘average accuracy’ for

the comparison in Figure 3, whereby COACH has generated

Fig. 3. Summary of blind LBS predictions in the COMEO experiment

during last 22 weeks. The mean AUC was computed over all targets

tested in the corresponding weeks
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predictions for all the targets. As shown in Figure 3, the COACH
predictions achieve the highest AUC score among all the pre-
dictors in each of the 22 weeks. Overall, the mean AUC of
COACH is 0.87, which is 22.5% higher than the second best

predictor (‘naive_pocket’). We have also made an internal assess-
ment of TM-SITE and S-SITE on the same set of proteins, which
achieves an AUC score 0.82 and 0.78, which are 15.5% and 10%

higher than the ‘naive_pocket’ program, respectively. Again,
TM-SITE outperforms S-SITE in these sets, which demonstrates
the advantage of using structure information over sequence pro-

files. The AUC of TM-SITE is 10.4%, 12.7% and 64.3% higher
than that of COFACTOR, FINDSITE and ConCavity, respect-
ively, which are consistent with the data in our benchmark tests

although the assessment here is based on AUC whereby the
benchmark analysis was on the MCC values.
In Figure 4, we present four examples of the successful

COACH predictions in the CAMEO experiment for the proteins

bound with four typical categories of ligands (poly-nucleotide,
peptide, organic and ion-like). These examples are from (A)
DNA binding ETS domain of the human protein FEV in com-

plex with DNA (PDBID: 3zp5A); (B) beta’-COP/Insig-2 com-
plex (4j82A); (C) Glutathione transferase homolog from
Lodderomyces elongisporus bound with CIT (4ivfA); and (D)

R39-imipenem Acyl-enzyme bound with Mg2þ ion (4benA).
The I-TASSER models for the receptors all have correct fold
with a TM-score 40.5 in these examples (Xu and Zhang,
2010). The BioLiP library contains biologically relevant ligands

of both small molecules (e.g. metal ions and organic molecules)
and big molecules (e.g. nucleotides and peptides); these provide
the opportunity to predict resides bound with various ligand

types through the template-based modeling. As a result, the
final models of binding sites have the AUC¼ 0.9, 0.93, 0.97
and 0.97, respectively, which are 32.4%, 52.4%, 27.6% and

73.2% higher than the best predictions from the other server
groups.

3.6 Setting up of online COACH server

An online COACH server is set up and made freely available

at http://zhanglab.ccmb.med.umich.edu/COACH/. To use the
server, users can provide either sequence or 3D structure of the
query protein. If the query sequence is provided, I-TASSER
(Roy et al., 2010) will be used to construct 3D models for the

query, which are then used by the individual COACH programs
for the structure-based LBS predictions. The final LBS models
will be created by the SVM-based combinations. If a 3D model

of the target is provided, the structure will be directly used for the
LBS predictions.
Starting from a given 3D structural model, the COACH pre-

diction typically takes �1–10h depending on the size of the
query proteins. An additional time will be needed for the I-
TASSER structure prediction (�5–20h), if the users only pro-

vide the sequence. After the prediction is completed, an email
alert is sent to user with instruction to access the results, which
will be kept on the COACH website for 3 months. For each
target, the top 10 COACH predictions are listed, together with

the confidence score, ligand cluster size, the representative
ligand–protein templates, and the consensus LBS residues.
Supplementary Figure S5 shows an illustration of the COACH

results, taken from a snapshot of http://zhanglab.ccmb.med.
umich.edu/COACH/CH000001/. Except for the consensus LBS
predictions by COACH, up to top 5 predictions for the compo-

nent predictors are also summarized in the same web page.

4 CONCLUSION

Accurate identification of LBSs is essential to protein function
annotation and drug discovery. Inspired by the fact that no

individual methods can generate the optimal prediction for all
proteins, we have developed two complementary algorithms,
TM-SITE and S-SITE, for protein–ligand binding site predic-

tions. TM-SITE is built on the structural comparison of a
subset of continuously distributed residues associated with the
binding pockets in the query and template proteins, while
S-SITE is based on the binding-specific sequence profile–profile

alignments. Starting from the low-resolution 3D models gener-
ated by protein structure predictions, the LBS prediction meth-
ods are tested on a set of 500 non-redundant proteins harboring

814 natural, drug-like and metal ion ligands, where the correct
LBSs with an MCC above 0.5 are generated for 302 and 243
cases, by TM-SITE and S-SITE, respectively. Among the suc-

cessful predicted cases, 125 cases are predicted by either TM-
SITE or S-SITE which demonstrate the complementary feature
of the two algorithms.
The methods are controlled with three state-of-the-art meth-

ods from COFACTOR (Roy and Zhang, 2012), FINDSITE
(Brylinski and Skolnick, 2008) and ConCavity (Capra et al.,
2009). The TM-SITE predictions have an average MCC 0.48

which is 14% higher than COFACTOR and FINDSITE, and
84.6% higher than ConCavity; the differences correspond to
P-values510–11,510–9,510–53, respectively, in Student’s t-test.

The detailed data analysis showed that the major advantages of
the methods are attributed to the binding-specific substructure
alignment search for the template recognition, and the composite

potential appropriately balancing multiple scoring matrices from
both global and local, structural and sequence comparisons.

Fig. 4. Illustrative examples of successful predictions by COACH in the

CAMEO. The receptor structures are shown in gray cartoon buried in

transparent surface. The native and predicted ligands are in magenta and

orange colors, respectively. The true positive, false positive and false

negative predictions of the ligand-binding residues by COACH are high-

lighted in green, red and blue sticks, respectively. (A) DNA binding ETS

domain of FEV in complex with DNA. (B) beta’-COP/Insig-2 complex.

(C) Glutathione transferase homolog from Lodderomyces elongisporus

bound with CIT. (D) R39-imipenem Acyl-enzyme bound with Mg2þ ion
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Due to the complementarity of the LBS prediction methods,

the best predictions are shown to be generated by a consensus

of different programs, as collected by a new meta-LBS

predictor COACH which outputs the residue-specific ligand-

binding probability by the SVM technique. In the same testing

set of 500 non-redundant proteins, COACH generates predic-

tions with the MCC value 12.5% higher than the best individual

algorithms. COACH is also tested in the community-wide

CAMEO experiments, which was ranked as the best method in

each of the past 22 weeks with an overall AUC score of 0.87,

22.5% higher than the second best method from other

predictors.
An online server for COACH has been set up and made freely

available at http://zhanglab.ccmb.med.umich.edu/COACH. As a

meta-server approach, it contains predictions from five individ-

ual programs from TM-SITE, S-SITE, COFACTOR,

FINDSITE and ConCavity. We plan to update the COACH

server by combining new algorithms when they become avail-

able. In our benchmark test, the COACH program combing

all five programs indeed outperforms that only combining the

three internal methods from TM-SITE, S-SITE and

COFACTOR with the average MCC increased by �5%. Thus,

the inclusion of new algorithms will undoubtedly increase the

accuracy and coverage of COACH for protein–ligand binding

site predictions. Such high reliability and robustness with predic-

tions covering various categories of targets is paramount to the

ongoing genome-wide structure-based function annotations.
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